Comparison of the Determinants in the Differences in Force-Frequency Relationships between Rat and Rabbit Left Atria

  • Ko, Chang-Mann (Department of Pharmacology and Institute of Basic Medicine, Wonju-College of Medicine, Yonsei University) ;
  • Kim, Soon-Jin (Department of Pharmacology and Institute of Basic Medicine, Wonju-College of Medicine, Yonsei University)
  • Published : 2000.10.21

Abstract

The underlying mechanism commonly applicable for both the positive and negative force-frequency relationships (FFR) was pursued in left atria (LA) of rat and rabbit. The species differences in the roles of $Na^+/Ca^{2+}$ exchanger and sarcoplasmic reticulum (SR), which are major intracellular $Ca^{2+}$ regulatory mechanisms in the heart, were examined in the amplitude accommodation to the frequency that changed from 3 Hz to the variable test frequencies for 5 minutes in the electrically field stimulated left atria (LA) of rat and rabbit. Norepinephrine strongly increased the frequency-related amplitude accommodation in both of rat and rabbit LA, while monensin, oubain or the reduced $Na^+$ and 0 mM $Ca^{2+}$ containing Tyrode solution increased the frequency-related amplitude accommodation only in the rabbit LA. Monenisn was also able to increase the frequency-related amplitude accommodation only in 1-day old rat LA but not in 4-week old rat LA that had 75% less $Na^+/Ca^{2+}$ exchanger with 97% higher SR than 1-day old rat LA. Taken together, it is concluded that the differences in the prevalence between myocardial $Na^+/Ca^{2+}$ exchanger and SR in the amplitude accommodation to the frequency-change determine the difference in the FFR between rat and rabbit heart.

Keywords