
Ⅰ. Introduction

Let R 2 is two- dimensional Euclidean space,

p and q some fixed positive real numbers.

Let Q be the set defined by

Q = { ( s , t) R 2 : 0 s p , 0 t q }

And Let C 2 ( Q) be the collection of all

real valued continuous functions x defined on

Q such that x (0 , t) = x (x , 0 ) = 0 .

We can construct the Yeh- Wiener measure

( C 2 ( Q) , y , m y ) space such that a set of

points

= { (s0 , t0) , (s0 , t1) , , (s0 , t n ) , , (s m , t n )}

sat isfy ing 0 = s0 <s 1 < <sm p and

0 = t0 < t1< < t n q .

Let B ( R m n ) be the - a lg ebra of Borel

set E in the mn- dimensional Euclidean space

R m n , m n - a lg ebra of sets.

{ x C2 ( Q) : ( x (s1 , t1) , , x ( s m , t n ) ) E },

where , E B ( R m n ) .

= m n , where the union over all

partitions of Q . T his is an algebra of
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subsets in C 2 ( Q) .

We obtain the - algebra y of

Caratheodory measurable subsets of C 2 ( Q)

with respect to the outer measure induced by

the probability measure on F .

A real valued functional on C 2 ( Q) is

said to be Yeh- Wiener measurable if it is

y - m easurable (measurable trans formation

from ( C 2 ( Q) , y ) into ( R 1 , B ( R 1)) ).

Its integral with respect to m y , if it exists, is

called its Yeh- Wiener integral which is

denoted by E y ( ) , we write

E y ( F ) =
C 2 ( Q)

(x )dm y (x )

We say that is Yeh- Wiener integrable

or m y - int egrable when the Yeh- Wiener

integral of , E y ( ) , exists and infinite.

T he Yeh- Wiener measurability and

Yeh- Wiener integrability of a complex valued

functional on C 2 ( Q) are defined in terms of

its real and imaginary parts.

Definition 1.1 Let ( C 2 ( Q) , y , m y ) be

Yeh- Wiener measure space, X a real valued

Yeh- Wiener measurable functional on

( C 2 ( Q) , y , m y ) . Define a probability

measure P x on (R 1 , B (R 1)) determined

by x as follows :

P x (B ) = m y (X - 1 (B ))

for every B in B (R 1) .

T his P x is called the probability

distribution of X .

T heorem 1.1 Let X and Z be the real
valued Yeh- Wiener measurable functions on

the Yeh- Wiener space ( C 2 ( Q) , y , m y )

with E y ( |Z |) < . T hen there exists a

B (R 1) - measurable and P x - int egrable

function f on R 1 such that

X - 1 ( B )
Z (x )dm y (x ) =

B
f ( w)dP x ( w)

for every B in B (R 1) .

If f and g are B (R 1 ) - measurable and

P x - int egrable functions on (R 1 , B (R 1) , P x)

which satisfy this expression then

f ( w) = g (w) for a.e. w in ( R 1 , B

(R 1 ) ,P x ) .

(Proof ) Let a set function on B (R 1)
be

(B ) =
X - 1 ( B )

Z (x )dm y (x )

for every B in B (R 1) . T hen is the

finite signed measure on B ( R 1) and is

absolutely continuous with respect to P x .

T here exists a real valued B (R 1) -

measurable and P x - int egrable function f

such that

(B ) =
B

f ( w)dP x ( w)

for every B in B (R 1) . Hence

X - 1( B )
Z (x )dm y (x ) =

B
f ( w)dP x ( w)

for every B in B (R 1) .

By the hypothesis ,
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B
f ( w)dP x ( w) =

B
g ( w)dP x ( w)

for every B in B (R 1) , and hence

f ( w) = g ( w) for a . e . w in (R 1 , B

(R 1 ) , P x ) .

II. Conditional Yeh- Wiener Integral

We introduce the definition of conditional

Yeh- Wiener integral and evaluate conditional
Yeh- Wiener integral for two Yeh- Wiener
integrable functional.

Definition 2 .1 Let X and Z be the real

valued Yeh- Wiener measurable functions on
the Yeh- Wiener measure space

( C2 ( Q) , y , m y ) with E y ( |Z |) < . The

equivalence class of B (R 1 ) - measurable and

P x - int egrable functions f on R 1 satisfying

X - 1( B )
Z (x )dm y (x ) =

B
f ( w)dP x ( w)

for every B B (R 1) is called the

conditional Yeh- Wiener integral of Z given

x and is denoted by E y (Z x ) .

We use E y (Z X ) to mean either

equivalence class of all functions f or a

version in it depending on the contex t .

T hus we have

X - 1(B )
Z (x )dm y (x ) =

B
E y (Z x ) ( w)dP x ( w)

for every B in B (R 1) .

T he notation " = " means that the

existence of one side in an equality implies
that of the other as well as the equality of the
two.

Proportion 2 .1 Suppose that X and Y
are two measurable transformations from

( C2 ( Q) , y ) into ( R 1 , B ( R 1)) with

E y ( | Y |) < . Then for an arbitrary

measurable transformation g from (R 1 , B

(R 1 )) into itself, we have

E y ( (g x ) Y ) = *

R 1
g ( w)E y ( Y X )( w)dP x ( w)

(Proof ) Let be a set function on y
defined by

(B ) =
B

Y (x )dm y (x)

for every B y .

For the real valued random variables g X

an Y on ( C 2 ( Q) , y , m y )

E y ( (g x ) Y ) =
C 2 ( Q)

g (X (x ) ) Y (x )dm y (x )

=
C 2( Q)

g (X (x ) ) Y (x )d (x )

=
R 1

g ( w)d X - 1( w)

For every A B (R 1)

X - 1 (A ) = (X - 1 (A ))

=
X - 1( A )

Y (x )dm y (x )

=
A

E y ( Y X )( w) dP x ( w)

Hence,

d X - 1 ( w)
dP x

= E y ( Y X )( w)

We have
*

*

*
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E y ( (g x ) Y ) =
R 1

g ( w)E y ( Y X ) ( w)dP x ( w)

Now we introduce some properties for the
proof of following theorems.

Suppose that X and Y are two

measurable transformations from ( C2 ( Q) , y )

into (R 1 , B (R 1)) with E y ( | Y |) < , and

P x is absolutely continuous with respect to

m on (R 1 , B ( R 1)) .

Let J w be a function on R 1 defined by

J w ( ) = {1/ 2 , for (w - , w + )
0 , for (w - , w + )

for every w R 1 , >0 .

Substituting J w for g in proposition 2.1,

we have

L im
0

E y ( ( J w X ) Y )

= L im
0 R 1

J w (x ) E y ( Y X ) (x )
dP x (x )

dm
dm (x )

Here E y ( Y X ) (x )
dP x (x )

dm
is m - integrable

on R 1 .
T hen there exists a version of

E y ( Y X )
dP x

dm
such that

E y ( Y X ) ( w)
dP x ( w)

dm
= L im

0
E y ( ( J w X ) Y )

for a.e. w (R 1 , B (R 1 ) , m ) . And, by the

linearity of E y ,

E y ( e i u x Y) = E y ( ( cos ux ) Y ) + iE y ( ( s in ux ) Y )

Applying proposition 2.1, we have

E y ( e i u x Y ) =
R 1

e i u wE y ( Y X )( w)dP x ( w)

for every u R 1 .

T heorem 2.1 Suppose that X and Y
are measurable transformations from

( C2 ( Q) , y , m y ) into (R 1 , B ( R 1 )) such that

E y ( | Y |) < , and P x is absolutely

continuous with respect to m on (R 1 , B

(R 1)) . T hen there exists a version of

E y ( Y X )
dP x

dm
such that

E y ( Y (X )) ( w)
dP x ( w)

dm

= L im
n 0

1
2 ( - n , n )(1 - | u |

n )e - i u wE y ( e i u x Y )dm ( u) )

for a.e. w (R 1 , B (R 1) , m ) .

(Proof ) For every u R 1 ,

E y ( e i u x Y ) =
R 1

e i u wE y ( Y X )( w)
dP x ( w)

dm

E y ( Y X )( w)
dP x ( w)

dm
is m - integrable

on R 1 .

Here E y ( e i u x Y) is Fourier transform of the

m - integrable function E y ( Y X ) ( w)
dP x ( w)

dm
.

T hus the proof is established.

Theorem 2.2 The measurable transformations

X , Y , and P x are as in theorem 2.1. And

suppose that E y ( e i u x Y) is an m -

integrable function of u R 1 . T hen there

exists E y ( Y X )
dP x

dm
such that

E y ( Y X ) ( w)
dP x ( w)

dm
=

1
2 R 1

e - i u wE y ( e i u x Y )dm ( u )

*
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for a.e. w (R 1 , B ( R 1) , m ) .

(Proof ) For every u R 1

E y ( e i u x Y ) =
R 1

e i u wE y ( Y X )( w)
dP x ( w)

dm
dm ( w)

Let be a set function on B (R 1) defined

by

(B ) =
B

E y ( Y X )( w)dP x ( w)

for every B B (R 1) .

Since, E y ( Y X ) is P x - integrable on

R 1 , is a finite signed measure on (R 1 ,

B (R 1)) which is absolutely continuous with

respect to P x .

Since, E y ( e i u x Y ) is an m - integrable

function of u on R 1 , we have

d ( w)
dm

= 1
2 R 1

e - i u wE y ( e i u x Y)dm ( u) )

for a.e. w (R 1 , B ( R 1) , m ) .

And then

d ( w)
dm

= E y ( Y X )( w)
dP x ( w)

dm

We can evaluate conditional Yeh- Wiener
integral for Yeh- Wiener integrable function
conditioned

by X (x ) = x ( s , t) for x C2 ( Q) where

Q = [0 , s] [0 , t] for some fixed positive real

numbers s and t .

Let Y (x ) =
t

0

s

0
{x ( u , v)}2du dv , we

can evaluate E y [ J w (x (s , t)) {x ( u , v)}2 ] ,

E y ( Y X )( w) .
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