용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC

  • 문형대 (서울대학교 응용화학부) ;
  • 김준희 (서울대학교 응용화학부) ;
  • 하흥용 (한국과학기술연구원 전지.연료전지센터) ;
  • 임태훈 (한국과학기술연구원 전지.연료전지센터) ;
  • 홍성안 (한국과학기술연구원 전지.연료전지센터) ;
  • 이호인 (서울대학교 응용화학부)
  • Moon, Hyeung-Dae (School of Chemical Engineering, Seoul National University) ;
  • Kim, Joon-Hee (School of Chemical Engineering, Seoul National University) ;
  • Ha, Heung Yong (Battery and Fuel Cell Research Center, KIST) ;
  • Lim, Tae-Hoon (Battery and Fuel Cell Research Center, KIST) ;
  • Hong, Sung-Ahn (Battery and Fuel Cell Research Center, KIST) ;
  • Lee, Ho-In (School of Chemical Engineering, Seoul National University)
  • 투고 : 1999.05.13
  • 심사 : 1999.06.11
  • 발행 : 1999.08.10

초록

직접 내부개질형 MCFC용 촉매의 반응 전과 후의 특성분석을 ICP, BET, CHN, EDS, $H_2$ 화학흡착 분석을 통하여 수행하였다. 반응을 거치는 동안 탄산염 전해질의 구성 성분인 K와 Li가 촉매에 전달되고, 그 누적량은 단위전지 내의 위치에 따라 입구, 출구, 중간 순으로 감소하였다. 알칼리 전달량 증가에 따라 BET 표면적과 Ni 분산도가 감소하고 촉매 표면에 증착된 알칼리 탄산염 물질이 존재하는 것으로부터, 촉매 표면상에 존재하는 알칼리성분의 물리적 피복이 촉매 활성을 감소시키는 중요한 원인임을 확인하였다. SEM 분석 결과, 입구, 중간, 출구 순으로 알칼리 성분의 표면 피복율이 감소하였으나, 실제 메탄에 대한 수증기 개질반응의 촉매활성은 출구부분 촉매가 입구나 중간 부분 촉매보다 낮은 활성을 보임으로써, 알칼리 탄산염의 물리적 피복에 의한 활성감소 이외의 다른 화학적 피독 요인이 존재함을 예측하였고, 이를 FT-IR 분석을 통해 확인하였다.

The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

키워드

과제정보

연구 과제 주관 기관 : 통상산업부

참고문헌

  1. Fuel Cell Handbook A. J. Appleby;F. R. Foulkes
  2. Hand of Batteries and Fuel Cells David Linden
  3. Proc. 3rd Int. Symp. on Carbonate Fuel Cell Technology D. Shores;H. Maru;I. Uchida;J. R. Selman
  4. Catalysis-Science and Technology Catalytic Steam Reforming J. R. Nilelsen
  5. Energy(Oxford) v.11 R. J. Selman
  6. Reprint of Fuel Cell Seminar M. Tarjanyi;L. Paetch;R. Bernard;H. Ghezel-Ayagih
  7. Natural Gas Conversion Ⅱ R. J. Berger;E. B. M. Doesburg;J. G. van Ommen;J. R. H. Ross
  8. Int. J. Hydrogen Energy v.17 S. Cavallaro;S. Freni;R. Cannistraci;M. Aquino;N. Giordano
  9. Catal. Sci. Tech. v.1 R. J. Berger;E. B. M. Doesburg;J. G. van Ommen;J. R. H. Ross
  10. JP Patent No. 6-339633 Tonen Corporation
  11. JP Patent No. 5-190194 Tonen Corporation
  12. Proc. 3rd Int. Symp. on Carbonate Fuel Cell technology C. Hirai.;M. Matsumra;A. Sasaki
  13. Fuel Cell Seminar M. Ijima;J. Tanka;A. Sasaki;T. Nakajima;K. Harima;Y. Miyake
  14. J. Electrochem. Soc. v.136 L. Paetsch;P. S. Patel;H. C. Maru;B. S. Baker
  15. Extended Abstracts for Fuel Cell Technology and Applications K. Kishida;E. Nishiyama;T. Tanaka
  16. Appl. Catal. A. v.126 J. R. Rostrup-Nielsen;L. J. Christiansen
  17. J. Pow. Sour. v.71 A. L. Dicks
  18. Final Report for 1981-~1987, DOE/DE-AC21-76ET11304 Molten Carbonate Fuel Cell Development L. Paetsch(et al.)
  19. J. Pow. Sour. v.63 H. Hirata;M. Hori
  20. IEEE Transactions on Energy Conversion v.10 T. Shinoki;M. Matsumura;A. Sasaki
  21. Catal. Today v.27 J. C. Lavalley
  22. Chemical Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC Hyeung-Dae Moon;Tae-Hoon Lim;Ho-In Lee