용해성 전구체를 통한 Sulfonated Poly(phenylene sulfide)의 합성과 암모니아가스 흡착

Synthesis of Sulfonated Poly(phenylene sulfide) via Soluble Precursor and its Ammonia Gas Adsorption

  • 손원근 (충남대학교 고분자공학과) ;
  • 김현석 (충남대학교 고분자공학과) ;
  • 박수길 (충북대학교 공업화학과)
  • Son, Won Keun (Department of Polymer Science & Engineering, Chungnam National University) ;
  • Kim, Hyun Suk (Department of Polymer Science & Engineering, Chungnam National University) ;
  • Park, Soo Gil (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 1998.11.26
  • 심사 : 1999.06.14
  • 발행 : 1999.08.10

초록

본 연구에서 술폰화된 poly(phenylene sulfide)(SPPS)는 10%의 발연황산으로 PPST를 술폰화한 후 NaOH 수용액으로 demethylation하여 제조하였다. 유기용매에 용해되는 PPST는 methyl-(phenylthio)phenyl sulfoxide(MPPSO)의 자가축합 반응으로 합성되었다. SPPS는 $1200cm^{-1}$에서 $-SO_{3}H$의 비대칭 O=S=O 신축진동에 의한 흡수피크와 $621cm^{-1}$에서 S-O 신축진동에 의한 흡수피크가 관찰된 것으로 보아 술폰산기가 도입된 것을 알 수 있다. PPST의 술폰화를 $150^{\circ}C$에서 12시간 반응했을 때 반복단위당 1.48개의 술폰산기가 도입되었으며, 고온 GPC로 측정된 PPST와 SPPS의 중량평균분자량(Mw)은 각각 118323과 131204이었다. SPPS의 암모니아 가스 흡착능은 $9.67mmol\;NH_{3}/g$이었고, 활성탄, 실리카겔보다 월등히 높았다.

In this work, sulfonated poly(phenylene sulfide) (SPPS) was prepared by demethylation with aqueous NaOH solution after poly[methyl[4-(phenylthio)phenyl]sulfonium trifluoromethanesulfonate](PPST) was sulfonated with fumic sulfonic acid(10% $SO_{3}-H_{2}SO_{4}$). PPST soluble in organic solvents was synthesiszed by self-condensation polymerization of methyl-(phenylthio)phenyl sulfoxide(MPPSO). SPPS showed IR bands of asymmetric O=S=O stretching at $1200cm^{-1}$ and S-O stretching at $621cm^{-1}$ from $-SO_{3}H$ group. From the result, it could be known that sulfonic acid groups were introduced to poly(phenylene sulfide). when PPST was sulfonated for 12hr at $150^{\circ}C$, 1.48 sulfonic acid groups were introduced per repeat unit. The weight average molecular weight(Mw) of PPST and SPPS determined by high temperature GPC were 118323 and 131204, respectively. The SPPS exhibited adsorption capacity of ammonia gas $9.67mmol\;NH_{3}/g$ and it was much higher than that of active carbon or silica gel.

키워드

참고문헌

  1. Chem. Soc. Japan v.12 金子克美;尾關壽美男;井上勝也
  2. Nippon Kanaku Kaishi K. Kaneko;S. Ozeki;K. Inouye
  3. Zeolites v.2 J. M. Goupil;J. F. Hemidy;D. Cornet
  4. Bull. Chem. Soc. Jpn v.62 N. Toshima;H. Asanuma;K. Yamaguchi;H. Hirai
  5. Ind. Eng. Chem. Prod. Rev. Dev. v.25 G. Tuenter;W. F. van Leeuwen;J. M. Leo
  6. Solid State Ionics v.9-10 S. Yoshkado(et al.)
  7. Solid State Ionics v.40-41 S. Yoshkado(et al.)
  8. Chem. Soc. Japan v.12 T. Hori;K. Satio;S. Frusaki;T. Sugo;J. Okamoto
  9. J. Membrane Sci. v.58 S. Tsuneda;K. Saito;S. Furusaki
  10. J. Appl. Polym. Sci. v.30 J. Okamoto;T. Sugo;A. Katakai;H. Omichi
  11. Ind. Eng. Chem. Res. v.29 no.11 H. Asanuma;A. Takemura;N. Toshima;H. Hirai
  12. Bull. Chem. Soc. Jpn. v.62 N. Toshima;H. Asanuma;H. Hirai
  13. Polymer(Korea) v.22 no.1 J. S. Park;Y. C. Nho;J. H. Jin
  14. Polymer(Korea) v.21 no.5 J. S. Park;O. H. Kwon;Y. C. Nho
  15. Polymer(Korea) v.21 no.2 J. S. Park;Y. C. Nho
  16. Polymer(Korea) v.22 no.2 J. S. Park;Y. C. Nho
  17. J. Polym. Sci. Part A: Polym. Chem. v.31 M. Ueda(et al.)
  18. Ind. Eng. Chem. Res. v.36 K. Miyataka;H. Iyotani;K. Yamamoto;E. Tsuchida
  19. Ind. Eng. Chem. Res. v.34 J. C. Robin Turner;P. Meares;K. A. Weldon
  20. Macromolecules v.26 E. Tsuchida;E. Shouji;K. Yamamoto
  21. U.S. Patent 3354129 J. T. Edmonde;H. W. Hill