대한산업공학회지 (Journal of Korean Institute of Industrial Engineers)
- 제25권3호
- /
- Pages.382-392
- /
- 1999
- /
- 1225-0988(pISSN)
- /
- 2234-6457(eISSN)
로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발
Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control
초록
Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.
키워드