DOI QR코드

DOI QR Code

Limit analysis of plates-a finite element formulation

  • Capsoni, Antonio (Department of Structural Engineering, Politecnico di Milano) ;
  • Corradi, Leone (Department of Structural Engineering, Politecnico di Milano)
  • Published : 1999.10.25

Abstract

A procedure for the computation of the load carrying capacity of perfectly plastic plates in bending is presented. The approach, based on the kinematic theorem of limit analysis, requires the evaluation of the minimum of a convex, but non-smooth, function under linear equality constraints. A systematic solution procedure is devised, which detects and eliminates the finite elements which are predicted as rigid in the collapse mechanism, thus reducing the problem to the search for the minimum of a smooth and essentially unconstrained function of nodal velocities. Both Kirchhoff and Mindlin plate models are considered. The effectiveness of the approach is illustrated by means of some examples.

Keywords

References

  1. Argyris, J.H. (1966), "Continua and discontinua", Proc. 1st Conf. Matrix Methods in Structural Mechanics, AFFDL, TR 66-88, Dayton OH, 11-92.
  2. Bottero, A., Negre, R., Pastor, J. and Turgeman, S. (1980), "Finite element method and limit analysis theory for soil mechanics problems", Comp. Meth. Appl. Mechns Engng., 22, 131-149. https://doi.org/10.1016/0045-7825(80)90055-9
  3. Capsoni, A. and Corradi, L. (1997), "A finite element formulation of the rigid-plastic limit analysis problem", Int. J. Num. Methods Engng., 40, 2063-2086. https://doi.org/10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-#
  4. Casciaro, R. and Cascini, L. (1982), "A mixed formulation and mixed finite elements for limit analysis", Int. J. Num. Methods Engng., 18, 211-243. https://doi.org/10.1002/nme.1620180206
  5. Cohn, M.Z. and Maier, G., edts. (1979), Engineering Plasticity by Mathematical Programming, Pergamon Press, New York, NY.
  6. Corradi, L. (1983), "A displacement formulation for the finite element elastic-plastic problem", Meccanica, 18, 77-91. https://doi.org/10.1007/BF02128348
  7. Christiansen, E. and Larsen, S. (1983), "Computations in limit analysis for plastic plates", Int. J. Num. Methods Engng., 19, 169-184. https://doi.org/10.1002/nme.1620190203
  8. Del Rio Cabrera, L. (1970), Limit Analysis of Rectangular Plates (in French), Master thesis, Mons, Belgium.
  9. Eason, G. (1958), "Velocity fields for circular plates with the von Mises yield condition", J. Mech. and Phys. Solids, 6, 231-235. https://doi.org/10.1016/0022-5096(58)90028-0
  10. Hodge, Ph. G. Jr (1959), Plastic Analysis of Structures, McGraw-Hill, New York, NY.
  11. Hodge, Ph. G. Jr and Belytschko, T. (1968), "Numerical methods for the limit analysis of plates", Trans. ASME, J. Appl. Mech., 35, 796-802. https://doi.org/10.1115/1.3601308
  12. Hopkins, H.G. and Prager, W. (1953), "The load carrying capacity of circular plates", J. Mech. and Phys. Solids, 2, 1-13. https://doi.org/10.1016/0022-5096(53)90022-2
  13. Hopkins, H.G. and Wang, A.J. (1954), "Load carrying capacity for circular plates of perfectly-plastic material with arbitrary yield condition", J. Mech. and Phys. Solids, 3, 117-129.
  14. Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, New York, NY.
  15. Jiang, G.L. (1995), "Nonlinear finite element formulation of kinematic limit analysis", Int. J. Num. Methods Engng., 38, 2775-2807. https://doi.org/10.1002/nme.1620381607
  16. Liu, Y.H., Cen, Z.Z. and Xu, B.J. (1995), "A numerical method for plastic limit analysis of 3-D structures", Int. J. Solids Struct., 32, 1645-1658. https://doi.org/10.1016/0020-7683(94)00230-T
  17. Lubliner, J. (1990), Plasticity Theory, Macmillan, New York, NY.
  18. Papadopoulus, P. and Taylor, R.L. (1991), "An analysis of inelastic Reissner-Mindlin plates", Finite Elements in Analysis and Design, 10, 221-233. https://doi.org/10.1016/0168-874X(91)90010-V
  19. Ponter, A.R.S. and Carter, K.F. (1997), "Limit state solutions based upon linear elastic solutions with a spatially varying elastic modulus", Comp. Meth. Appl. Mechns Engng., 140, 237-258. https://doi.org/10.1016/S0045-7825(96)01104-8
  20. Save, M. (1995), Atlas of Limit Loads of Metal Plates, Shells and Disks, Elsevier, Amsterdam.
  21. Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity fields", Comp. Meth. Appl. Mechns Engng., 127, 293-314. https://doi.org/10.1016/0045-7825(95)00868-1
  22. Yang, G. (1988), "Panpenalty finite element programming for plastic limit analysis", Comput. Struct., 28, 749-755. https://doi.org/10.1016/0045-7949(88)90415-4
  23. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, 2, McGraw-Hill, London, U.K.

Cited by

  1. Locking-free discontinuous finite elements for the upper bound yield design of thick plates vol.103, pp.12, 2015, https://doi.org/10.1002/nme.4912
  2. Adaptive element-free Galerkin method applied to the limit analysis of plates vol.199, pp.37-40, 2010, https://doi.org/10.1016/j.cma.2010.04.004
  3. On the performance of non-conforming finite elements for the upper bound limit analysis of plates vol.94, pp.3, 2013, https://doi.org/10.1002/nme.4460
  4. A 3D finite element with planar symmetry for limit analysis computations vol.194, pp.17, 2005, https://doi.org/10.1016/j.cma.2004.06.010
  5. Plastic Collapse Analysis of Mindlin–Reissner Plates Using a Stabilized Mesh-Free Method vol.13, pp.01, 2016, https://doi.org/10.1142/S0219876216500043
  6. A triangular finite element for sequential limit analysis of shells vol.35, pp.10-11, 2004, https://doi.org/10.1016/j.advengsoft.2004.03.014
  7. Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
  8. Finite element limit analysis of anisotropic structures vol.195, pp.41-43, 2006, https://doi.org/10.1016/j.cma.2005.06.032
  9. Post-collapse analysis of plates and shells based on a rigid–plastic version of the TRIC element vol.192, pp.33-34, 2003, https://doi.org/10.1016/S0045-7825(03)00373-6
  10. Limit analysis of plates using the EFG method and second-order cone programming vol.78, pp.13, 2009, https://doi.org/10.1002/nme.2535
  11. A dual algorithm for shakedown analysis of plate bending vol.86, pp.7, 2011, https://doi.org/10.1002/nme.3081
  12. An extended shakedown theory on an elastic–plastic spherical shell vol.101, 2015, https://doi.org/10.1016/j.engstruct.2015.07.021
  13. Upper and lower bound limit analysis of plates using FEM and second-order cone programming vol.88, pp.1-2, 2010, https://doi.org/10.1016/j.compstruc.2009.08.011
  14. Shakedown analysis of circular plates using a yield criterion of the mean vol.55, pp.1, 2017, https://doi.org/10.1007/s00158-016-1460-z
  15. A stabilized discrete shear gap finite element for adaptive limit analysis of Mindlin-Reissner plates 2013, https://doi.org/10.1002/nme.4560
  16. Upper bound limit analysis of plates using a rotation-free isogeometric approach vol.1, pp.1, 2014, https://doi.org/10.1186/s40540-014-0012-5
  17. A curvature smoothing Hsieh–Clough–Tocher element for yield design of reinforced concrete slabs vol.152, 2015, https://doi.org/10.1016/j.compstruc.2015.02.009
  18. Limit analysis of plates and slabs using a meshless equilibrium formulation vol.83, pp.13, 2010, https://doi.org/10.1002/nme.2887
  19. Lower bound static approach for the yield design of thick plates vol.100, pp.11, 2014, https://doi.org/10.1002/nme.4776
  20. POST-CRITICAL BEHAVIOR OF MODERATELY THICK AXISYMMETRIC SHELLS: A SEQUENTIAL LIMIT ANALYSIS APPROACH vol.01, pp.03, 2001, https://doi.org/10.1142/S021945540100024X
  21. A computational homogenization approach for the yield design of periodic thin plates. Part II : Upper bound yield design calculation of the homogenized structure vol.51, pp.13, 2014, https://doi.org/10.1016/j.ijsolstr.2014.03.019
  22. Limit analysis of orthotropic plates☆☆Partial results were presented at the Plasticity '00 Symposium, Whistler, BC, 16–20 July 2000. vol.19, pp.10, 2003, https://doi.org/10.1016/S0749-6419(02)00021-9
  23. Limit analysis of orthotropic structures based on Hill’s yield condition vol.38, pp.22-23, 2001, https://doi.org/10.1016/S0020-7683(00)00241-9
  24. An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming vol.281, 2015, https://doi.org/10.1016/j.cam.2014.12.006
  25. A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls vol.44, pp.5, 2007, https://doi.org/10.1016/j.ijsolstr.2006.06.033
  26. The Equilibrium Cell-Based Smooth Finite Element Method for Shakedown Analysis of Structures 2017, https://doi.org/10.1142/S0219876218400133
  27. A finite element formulation of Mindlin plates for limit analysis vol.27, pp.1, 2011, https://doi.org/10.1002/cnm.1300
  28. A limit analysis of Mindlin plates using the cell-based smoothed triangular element CS-MIN3 and second-order cone programming (SOCP) vol.1, pp.1, 2014, https://doi.org/10.1186/2196-1166-1-6
  29. Automating the Formulation and Resolution of Convex Variational Problems : Applications from Image Processing to Computational Mechanics vol.46, pp.3, 2020, https://doi.org/10.1145/3393881
  30. A pseudo-equilibrium finite element for limit analysis of Reissner-Mindlin plates vol.96, pp.None, 2021, https://doi.org/10.1016/j.apm.2021.03.004