References
- Argyris, J.H. (1966), "Continua and discontinua", Proc. 1st Conf. Matrix Methods in Structural Mechanics, AFFDL, TR 66-88, Dayton OH, 11-92.
- Bottero, A., Negre, R., Pastor, J. and Turgeman, S. (1980), "Finite element method and limit analysis theory for soil mechanics problems", Comp. Meth. Appl. Mechns Engng., 22, 131-149. https://doi.org/10.1016/0045-7825(80)90055-9
- Capsoni, A. and Corradi, L. (1997), "A finite element formulation of the rigid-plastic limit analysis problem", Int. J. Num. Methods Engng., 40, 2063-2086. https://doi.org/10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-#
- Casciaro, R. and Cascini, L. (1982), "A mixed formulation and mixed finite elements for limit analysis", Int. J. Num. Methods Engng., 18, 211-243. https://doi.org/10.1002/nme.1620180206
- Cohn, M.Z. and Maier, G., edts. (1979), Engineering Plasticity by Mathematical Programming, Pergamon Press, New York, NY.
- Corradi, L. (1983), "A displacement formulation for the finite element elastic-plastic problem", Meccanica, 18, 77-91. https://doi.org/10.1007/BF02128348
- Christiansen, E. and Larsen, S. (1983), "Computations in limit analysis for plastic plates", Int. J. Num. Methods Engng., 19, 169-184. https://doi.org/10.1002/nme.1620190203
- Del Rio Cabrera, L. (1970), Limit Analysis of Rectangular Plates (in French), Master thesis, Mons, Belgium.
- Eason, G. (1958), "Velocity fields for circular plates with the von Mises yield condition", J. Mech. and Phys. Solids, 6, 231-235. https://doi.org/10.1016/0022-5096(58)90028-0
- Hodge, Ph. G. Jr (1959), Plastic Analysis of Structures, McGraw-Hill, New York, NY.
- Hodge, Ph. G. Jr and Belytschko, T. (1968), "Numerical methods for the limit analysis of plates", Trans. ASME, J. Appl. Mech., 35, 796-802. https://doi.org/10.1115/1.3601308
- Hopkins, H.G. and Prager, W. (1953), "The load carrying capacity of circular plates", J. Mech. and Phys. Solids, 2, 1-13. https://doi.org/10.1016/0022-5096(53)90022-2
- Hopkins, H.G. and Wang, A.J. (1954), "Load carrying capacity for circular plates of perfectly-plastic material with arbitrary yield condition", J. Mech. and Phys. Solids, 3, 117-129.
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, New York, NY.
- Jiang, G.L. (1995), "Nonlinear finite element formulation of kinematic limit analysis", Int. J. Num. Methods Engng., 38, 2775-2807. https://doi.org/10.1002/nme.1620381607
- Liu, Y.H., Cen, Z.Z. and Xu, B.J. (1995), "A numerical method for plastic limit analysis of 3-D structures", Int. J. Solids Struct., 32, 1645-1658. https://doi.org/10.1016/0020-7683(94)00230-T
- Lubliner, J. (1990), Plasticity Theory, Macmillan, New York, NY.
- Papadopoulus, P. and Taylor, R.L. (1991), "An analysis of inelastic Reissner-Mindlin plates", Finite Elements in Analysis and Design, 10, 221-233. https://doi.org/10.1016/0168-874X(91)90010-V
- Ponter, A.R.S. and Carter, K.F. (1997), "Limit state solutions based upon linear elastic solutions with a spatially varying elastic modulus", Comp. Meth. Appl. Mechns Engng., 140, 237-258. https://doi.org/10.1016/S0045-7825(96)01104-8
- Save, M. (1995), Atlas of Limit Loads of Metal Plates, Shells and Disks, Elsevier, Amsterdam.
- Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity fields", Comp. Meth. Appl. Mechns Engng., 127, 293-314. https://doi.org/10.1016/0045-7825(95)00868-1
- Yang, G. (1988), "Panpenalty finite element programming for plastic limit analysis", Comput. Struct., 28, 749-755. https://doi.org/10.1016/0045-7949(88)90415-4
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, 2, McGraw-Hill, London, U.K.
Cited by
- Locking-free discontinuous finite elements for the upper bound yield design of thick plates vol.103, pp.12, 2015, https://doi.org/10.1002/nme.4912
- Adaptive element-free Galerkin method applied to the limit analysis of plates vol.199, pp.37-40, 2010, https://doi.org/10.1016/j.cma.2010.04.004
- On the performance of non-conforming finite elements for the upper bound limit analysis of plates vol.94, pp.3, 2013, https://doi.org/10.1002/nme.4460
- A 3D finite element with planar symmetry for limit analysis computations vol.194, pp.17, 2005, https://doi.org/10.1016/j.cma.2004.06.010
- Plastic Collapse Analysis of Mindlin–Reissner Plates Using a Stabilized Mesh-Free Method vol.13, pp.01, 2016, https://doi.org/10.1142/S0219876216500043
- A triangular finite element for sequential limit analysis of shells vol.35, pp.10-11, 2004, https://doi.org/10.1016/j.advengsoft.2004.03.014
- Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
- Finite element limit analysis of anisotropic structures vol.195, pp.41-43, 2006, https://doi.org/10.1016/j.cma.2005.06.032
- Post-collapse analysis of plates and shells based on a rigid–plastic version of the TRIC element vol.192, pp.33-34, 2003, https://doi.org/10.1016/S0045-7825(03)00373-6
- Limit analysis of plates using the EFG method and second-order cone programming vol.78, pp.13, 2009, https://doi.org/10.1002/nme.2535
- A dual algorithm for shakedown analysis of plate bending vol.86, pp.7, 2011, https://doi.org/10.1002/nme.3081
- An extended shakedown theory on an elastic–plastic spherical shell vol.101, 2015, https://doi.org/10.1016/j.engstruct.2015.07.021
- Upper and lower bound limit analysis of plates using FEM and second-order cone programming vol.88, pp.1-2, 2010, https://doi.org/10.1016/j.compstruc.2009.08.011
- Shakedown analysis of circular plates using a yield criterion of the mean vol.55, pp.1, 2017, https://doi.org/10.1007/s00158-016-1460-z
- A stabilized discrete shear gap finite element for adaptive limit analysis of Mindlin-Reissner plates 2013, https://doi.org/10.1002/nme.4560
- Upper bound limit analysis of plates using a rotation-free isogeometric approach vol.1, pp.1, 2014, https://doi.org/10.1186/s40540-014-0012-5
- A curvature smoothing Hsieh–Clough–Tocher element for yield design of reinforced concrete slabs vol.152, 2015, https://doi.org/10.1016/j.compstruc.2015.02.009
- Limit analysis of plates and slabs using a meshless equilibrium formulation vol.83, pp.13, 2010, https://doi.org/10.1002/nme.2887
- Lower bound static approach for the yield design of thick plates vol.100, pp.11, 2014, https://doi.org/10.1002/nme.4776
- POST-CRITICAL BEHAVIOR OF MODERATELY THICK AXISYMMETRIC SHELLS: A SEQUENTIAL LIMIT ANALYSIS APPROACH vol.01, pp.03, 2001, https://doi.org/10.1142/S021945540100024X
- A computational homogenization approach for the yield design of periodic thin plates. Part II : Upper bound yield design calculation of the homogenized structure vol.51, pp.13, 2014, https://doi.org/10.1016/j.ijsolstr.2014.03.019
- Limit analysis of orthotropic plates☆☆Partial results were presented at the Plasticity '00 Symposium, Whistler, BC, 16–20 July 2000. vol.19, pp.10, 2003, https://doi.org/10.1016/S0749-6419(02)00021-9
- Limit analysis of orthotropic structures based on Hill’s yield condition vol.38, pp.22-23, 2001, https://doi.org/10.1016/S0020-7683(00)00241-9
- An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming vol.281, 2015, https://doi.org/10.1016/j.cam.2014.12.006
- A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls vol.44, pp.5, 2007, https://doi.org/10.1016/j.ijsolstr.2006.06.033
- The Equilibrium Cell-Based Smooth Finite Element Method for Shakedown Analysis of Structures 2017, https://doi.org/10.1142/S0219876218400133
- A finite element formulation of Mindlin plates for limit analysis vol.27, pp.1, 2011, https://doi.org/10.1002/cnm.1300
- A limit analysis of Mindlin plates using the cell-based smoothed triangular element CS-MIN3 and second-order cone programming (SOCP) vol.1, pp.1, 2014, https://doi.org/10.1186/2196-1166-1-6
- Automating the Formulation and Resolution of Convex Variational Problems : Applications from Image Processing to Computational Mechanics vol.46, pp.3, 2020, https://doi.org/10.1145/3393881
- A pseudo-equilibrium finite element for limit analysis of Reissner-Mindlin plates vol.96, pp.None, 2021, https://doi.org/10.1016/j.apm.2021.03.004