DOI QR코드

DOI QR Code

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Phill-Seung (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Yong-Myung (Steel Str. Tech. Div., Research Institute of Industrial Science & Technology)
  • Published : 1999.08.25

Abstract

A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1968), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2, 419-451.
  2. Allman, D.J.(1984), "A compatible triangular element including vertex rotation for plane elasticity problems", Compo. Struct., 19, 1-8 . https://doi.org/10.1016/0045-7949(84)90197-4
  3. Allman, D.J.(1988), "A quadrilateral finite element including vertex rotations for plane elasticity analysis", Int. J. Numer. Methods Eng., 26, 717-730. https://doi.org/10.1002/nme.1620260314
  4. Bergan, P.G. and Felippa., C.A.(1985), "A triangular membrane element with rotational degrees of freedom" , Compo. Methods Appl. Mech. Eng., 50, 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
  5. Choi, C.K. and Schnobrich, W.C.(1975), "Nonconforming finite element analysis of shells", J. Eng. Mech. Div. ASCE, 101, 447-464.
  6. Choi, C.K.(1984), "A conoidal shell analysis by modified isoparametric element", Comp. Struct., 18, 921-924. https://doi.org/10.1016/0045-7949(84)90037-3
  7. Choi, C.K.(1986), "Reduced integrated nonconforming plate element" , J. Eng. Mech. Div. ASCE, 112, 370-385. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:4(370)
  8. Choi, C.K. and Kim, S.H.(1991), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin plate element", Comp. Struct., 39, 557-569. https://doi.org/10.1016/0045-7949(91)90064-S
  9. Choi, C.K. and Lee, W.H.(1996), Versatile variable-node flat shell element", J. of Eng. Mech. ASCE, 122, 432-44l. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
  10. Choi, C.K., Kim, S.H., Park, Y.M. and Chung, K.Y.(1998), "Two-dimensional nonconforming finite elements: A state-of-art" , Struct. Eng. and Mech., 6(1), 41-61. https://doi.org/10.12989/sem.1998.6.1.041
  11. Choi, C.K, and Paik, J.G.(1994), "An efficient four node degenerated shell element based on the assumed covariant strain" , Struct. Eng. and Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
  12. Chroscielewski, J., Makowski, J., Stumpf H.(1997), "Finite element analysis of smooth, folded and multi-shell structures" , Comput. Methods Appl. Mech. Eng. 141, 1-46. https://doi.org/10.1016/S0045-7825(96)01046-8
  13. Cook, R.D.(1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
  14. Cook, R.D.(1994), "Four-node 'flat' shell element: drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior", Comp. Struct., 50, 549-555. https://doi.org/10.1016/0045-7949(94)90025-6
  15. Donea, J. and Lamain, G.(1987), "A modified representation of transverse shear in $C^{\circ}$ quadrilateral plate element", Comp. Methods Appl. Mech. Eng., 63, 183-207. https://doi.org/10.1016/0045-7825(87)90171-X
  16. Fam, A.R.M. and Turkstra, C.(1976), "Model study of horizontally curved box girder" , J. Eng. Struct. Div. ASCE, 102, ST5, 1097-1108.
  17. Frey, F.(1989), "Shell finite elements with six degrees of freedom per node", Analytical and Computational Models of Shells, CED-Vol. 3, ASME, New York.
  18. Gallagher, R.H.(1974), "Finite element representations for thin shell instability analysis" , In Buckling of Structures, B. Budiansky(ed.), IUTAM Symposiumn, Cambridge, MA, 40-51.
  19. Groenwold, A.A. and Stander, N.(1995), "An efficient 4-node 24 D.O.F. thick shell finite element with 5-point quadrature", Eng. Compu., 12, 723-747. https://doi.org/10.1108/02644409510104686
  20. Hinton, E. and Huang, H.C.(1986), "A family of quadrilateral mindlin plate elements with substitute shear strain fields" , Comp. Struct., 23(3), 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
  21. Hughes, T.J.R., Cohen, M. and Haroun, M.(1978), "Reduced and selective integration techniques in the finite element analysis of plates" , Nuclear Eng. Desg., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
  22. Hughes, T.J.R. and Brezzi, F.(1989), "On drilling degrees of freedom", Comp. Methods Appl. Mech. Eng., 72, 105-121. https://doi.org/10.1016/0045-7825(89)90124-2
  23. Hughes, T.J.R. and Tezduyar, T.E.(1981), "Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element" , J. of Appl. Mech., 48, 587-596. https://doi.org/10.1115/1.3157679
  24. Ibrahimbegovic, A. and Frey, F.(1994), "Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics", Int. J. Numer. Methods Eng., 37, 3659-3683. https://doi.org/10.1002/nme.1620372106
  25. lbrahimbegovic, A., Taylor, RL. and Wilson, E.L.(1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
  26. lura, M. and Atluri, S.N.(1992), "Formulation of a membrane finite element with drilling degrees of freedom" , Comput. Mech., 9, 417-428. https://doi.org/10.1007/BF00364007
  27. Jaamei, S., Frey, F. and Jetteur, Ph.(1989), "Nonlinear thin shell finite element with six degrees of freedom per node", Comp. Methods in Applied Mech. Eng., 75, 251-266. https://doi.org/10.1016/0045-7825(89)90028-5
  28. Jetteur, Ph.(1986), "A shallow shell element with in-plane rotational degrees of freedom", lREM Internal Report 86/3, Ecole Polytechnique Federale de Lausanne.
  29. Jetteur, Ph. and Frey, F.(1986), "A four-node marguerre element for non-linear shell analysis", Eng. Comput., 3, 276-282. https://doi.org/10.1108/eb023667
  30. Kebari, H. and Cassell, A.C.(1991), "Non-conforming modes stabilization of a nine-node stressresultant degenerated shell element with drilling freedom" , Comp. Struct., 40, 569-580. https://doi.org/10.1016/0045-7949(91)90227-D
  31. Kim, S. H. and Choi, C. K.(1992), "Improvement of quadratic finite element for Mindlin plate bending" , Int. J. Numer. Methods Eng., 34, 197-208. https://doi.org/10.1002/nme.1620340112
  32. Lee, S.W. and Wong, S.C.(1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Methods Eng., 18, 1297-1311. https://doi.org/10.1002/nme.1620180903
  33. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy" , Finite Elements in Anal. Desg., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  34. MacNeal, R.H. and Harder, R.L.(1988), "A refined four-noded membrane element with rotational degrees of freedom" , Comp. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  35. Parisch, H.(1979), A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration" , Comp. Methods Appl. Mech. Eng., 20, 323-350. https://doi.org/10.1016/0045-7825(79)90007-0
  36. Reissner, E.(1965), "A note on variational principles in elasticity" , Int. J. Solids Struct., 1, 93-95. https://doi.org/10.1016/0020-7683(65)90018-1
  37. Sabir, A.B.(1985), "A rectangular and a triangular plane elasticity element with drilling degree of freedom", Proceedings of the Second International Conference on Variational Methods in Engineering, Brebbia C.A. (ed.), Southampton University, July 1985, Springer-Verlag, Berlin, 17- 55.
  38. SAP 90(1992), Structural Analysis Verification Manual, Computer & Structures Inc.
  39. Simo, J.C., Fox, D.D. and Rifai, M.S.(1989), "On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects" , Comp. Methods Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
  40. Taylor, R.L.(1987), "Finite element analysis of linear shell problems", Proc. Of the Mathematics in Finite Elements and Applications, Whiteman, J.R.(ed.), Academic Press, New York, 191-203.
  41. Taylor, R.L. and Simo, J.C.(1985), "Bending and membrane element for analysis of thick and thin shells", Proceedings of the NUMETA 85 Conference, Middleton J. and Pande G.N. (eds.), Balkeman Rotterdam, 587-591.
  42. Wilson, E.L. and lbrahimbegovic, A.(1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses" , Finite Elements in Anal. Desg., 7, 229-241. https://doi.org/10.1016/0168-874X(90)90034-C
  43. Zienkiewicz, O.C. and Taylor, R.L.(1989), The Finite Element Method: Basic Formulation and Linear Problems, I, McGraw-Hill, London.
  44. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M.(1971), "Reduced integration technique in general analysis of plates and shells" , Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211

Cited by

  1. An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304
  2. Analysis of 3D wall building structures dynamic response vol.22, pp.1, 2006, https://doi.org/10.12989/sem.2006.22.1.033
  3. Direct modification for non-conforming elements with drilling DOF vol.55, pp.12, 2002, https://doi.org/10.1002/nme.550
  4. The inter-element coupling effect of triangular flat shells vol.32, pp.7, 2015, https://doi.org/10.1108/EC-11-2014-0230
  5. Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
  6. Efficient remedy for membrane locking of 4-node flat shell elements by non-conforming modes vol.192, pp.16-18, 2003, https://doi.org/10.1016/S0045-7825(03)00203-2
  7. A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom vol.58, pp.14, 2003, https://doi.org/10.1002/nme.854
  8. A New, Efficient 8-Node Serendipity Element with Explicit and Assumed Strains Formulations vol.6, pp.4, 2005, https://doi.org/10.1080/155022891009486
  9. Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203
  10. Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893
  11. Finite- and boundary-element linear and nonlinear analyses of shells and shell-like structures vol.38, pp.8, 2002, https://doi.org/10.1016/S0168-874X(01)00103-2
  12. Analysis of shear wall with openings using super elements vol.25, pp.8, 2003, https://doi.org/10.1016/S0141-0296(03)00041-5
  13. Efficient three-dimensional seismic analysis of a high-rise building structure with shear walls vol.27, pp.6, 2005, https://doi.org/10.1016/j.engstruct.2005.02.006
  14. Hybrid/mixed assumed stress element for anisotropic laminated elliptical and parabolic shells vol.45, pp.11, 2009, https://doi.org/10.1016/j.finel.2009.06.004
  15. A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements vol.33, pp.3, 2016, https://doi.org/10.1108/EC-04-2015-0102
  16. Non-conforming modes for improvement of finite element performance vol.14, pp.5, 1999, https://doi.org/10.12989/sem.2002.14.5.595
  17. Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions vol.29, pp.6, 1999, https://doi.org/10.12989/sem.2008.29.6.643
  18. A refined finite element for first-order plate and shell analysis vol.40, pp.2, 1999, https://doi.org/10.12989/sem.2011.40.2.191
  19. 복합적층 원통형 쉘의 단부보강 효과 연구 vol.3, pp.2, 2012, https://doi.org/10.11004/kosacs.2012.3.2.047
  20. Benchmark tests of MITC triangular shell elements vol.68, pp.1, 1999, https://doi.org/10.12989/sem.2018.68.1.017