References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1968), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2, 419-451.
- Allman, D.J.(1984), "A compatible triangular element including vertex rotation for plane elasticity problems", Compo. Struct., 19, 1-8 . https://doi.org/10.1016/0045-7949(84)90197-4
- Allman, D.J.(1988), "A quadrilateral finite element including vertex rotations for plane elasticity analysis", Int. J. Numer. Methods Eng., 26, 717-730. https://doi.org/10.1002/nme.1620260314
- Bergan, P.G. and Felippa., C.A.(1985), "A triangular membrane element with rotational degrees of freedom" , Compo. Methods Appl. Mech. Eng., 50, 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
- Choi, C.K. and Schnobrich, W.C.(1975), "Nonconforming finite element analysis of shells", J. Eng. Mech. Div. ASCE, 101, 447-464.
- Choi, C.K.(1984), "A conoidal shell analysis by modified isoparametric element", Comp. Struct., 18, 921-924. https://doi.org/10.1016/0045-7949(84)90037-3
- Choi, C.K.(1986), "Reduced integrated nonconforming plate element" , J. Eng. Mech. Div. ASCE, 112, 370-385. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:4(370)
- Choi, C.K. and Kim, S.H.(1991), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin plate element", Comp. Struct., 39, 557-569. https://doi.org/10.1016/0045-7949(91)90064-S
- Choi, C.K. and Lee, W.H.(1996), Versatile variable-node flat shell element", J. of Eng. Mech. ASCE, 122, 432-44l. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
- Choi, C.K., Kim, S.H., Park, Y.M. and Chung, K.Y.(1998), "Two-dimensional nonconforming finite elements: A state-of-art" , Struct. Eng. and Mech., 6(1), 41-61. https://doi.org/10.12989/sem.1998.6.1.041
- Choi, C.K, and Paik, J.G.(1994), "An efficient four node degenerated shell element based on the assumed covariant strain" , Struct. Eng. and Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
- Chroscielewski, J., Makowski, J., Stumpf H.(1997), "Finite element analysis of smooth, folded and multi-shell structures" , Comput. Methods Appl. Mech. Eng. 141, 1-46. https://doi.org/10.1016/S0045-7825(96)01046-8
- Cook, R.D.(1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
- Cook, R.D.(1994), "Four-node 'flat' shell element: drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior", Comp. Struct., 50, 549-555. https://doi.org/10.1016/0045-7949(94)90025-6
-
Donea, J. and Lamain, G.(1987), "A modified representation of transverse shear in
$C^{\circ}$ quadrilateral plate element", Comp. Methods Appl. Mech. Eng., 63, 183-207. https://doi.org/10.1016/0045-7825(87)90171-X - Fam, A.R.M. and Turkstra, C.(1976), "Model study of horizontally curved box girder" , J. Eng. Struct. Div. ASCE, 102, ST5, 1097-1108.
- Frey, F.(1989), "Shell finite elements with six degrees of freedom per node", Analytical and Computational Models of Shells, CED-Vol. 3, ASME, New York.
- Gallagher, R.H.(1974), "Finite element representations for thin shell instability analysis" , In Buckling of Structures, B. Budiansky(ed.), IUTAM Symposiumn, Cambridge, MA, 40-51.
- Groenwold, A.A. and Stander, N.(1995), "An efficient 4-node 24 D.O.F. thick shell finite element with 5-point quadrature", Eng. Compu., 12, 723-747. https://doi.org/10.1108/02644409510104686
- Hinton, E. and Huang, H.C.(1986), "A family of quadrilateral mindlin plate elements with substitute shear strain fields" , Comp. Struct., 23(3), 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
- Hughes, T.J.R., Cohen, M. and Haroun, M.(1978), "Reduced and selective integration techniques in the finite element analysis of plates" , Nuclear Eng. Desg., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
- Hughes, T.J.R. and Brezzi, F.(1989), "On drilling degrees of freedom", Comp. Methods Appl. Mech. Eng., 72, 105-121. https://doi.org/10.1016/0045-7825(89)90124-2
- Hughes, T.J.R. and Tezduyar, T.E.(1981), "Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element" , J. of Appl. Mech., 48, 587-596. https://doi.org/10.1115/1.3157679
- Ibrahimbegovic, A. and Frey, F.(1994), "Stress resultant geometrically non-linear shell theory with drilling rotations. Part III: Linearized kinematics", Int. J. Numer. Methods Eng., 37, 3659-3683. https://doi.org/10.1002/nme.1620372106
- lbrahimbegovic, A., Taylor, RL. and Wilson, E.L.(1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
- lura, M. and Atluri, S.N.(1992), "Formulation of a membrane finite element with drilling degrees of freedom" , Comput. Mech., 9, 417-428. https://doi.org/10.1007/BF00364007
- Jaamei, S., Frey, F. and Jetteur, Ph.(1989), "Nonlinear thin shell finite element with six degrees of freedom per node", Comp. Methods in Applied Mech. Eng., 75, 251-266. https://doi.org/10.1016/0045-7825(89)90028-5
- Jetteur, Ph.(1986), "A shallow shell element with in-plane rotational degrees of freedom", lREM Internal Report 86/3, Ecole Polytechnique Federale de Lausanne.
- Jetteur, Ph. and Frey, F.(1986), "A four-node marguerre element for non-linear shell analysis", Eng. Comput., 3, 276-282. https://doi.org/10.1108/eb023667
- Kebari, H. and Cassell, A.C.(1991), "Non-conforming modes stabilization of a nine-node stressresultant degenerated shell element with drilling freedom" , Comp. Struct., 40, 569-580. https://doi.org/10.1016/0045-7949(91)90227-D
- Kim, S. H. and Choi, C. K.(1992), "Improvement of quadratic finite element for Mindlin plate bending" , Int. J. Numer. Methods Eng., 34, 197-208. https://doi.org/10.1002/nme.1620340112
- Lee, S.W. and Wong, S.C.(1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Methods Eng., 18, 1297-1311. https://doi.org/10.1002/nme.1620180903
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy" , Finite Elements in Anal. Desg., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. and Harder, R.L.(1988), "A refined four-noded membrane element with rotational degrees of freedom" , Comp. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
- Parisch, H.(1979), A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration" , Comp. Methods Appl. Mech. Eng., 20, 323-350. https://doi.org/10.1016/0045-7825(79)90007-0
- Reissner, E.(1965), "A note on variational principles in elasticity" , Int. J. Solids Struct., 1, 93-95. https://doi.org/10.1016/0020-7683(65)90018-1
- Sabir, A.B.(1985), "A rectangular and a triangular plane elasticity element with drilling degree of freedom", Proceedings of the Second International Conference on Variational Methods in Engineering, Brebbia C.A. (ed.), Southampton University, July 1985, Springer-Verlag, Berlin, 17- 55.
- SAP 90(1992), Structural Analysis Verification Manual, Computer & Structures Inc.
- Simo, J.C., Fox, D.D. and Rifai, M.S.(1989), "On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects" , Comp. Methods Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
- Taylor, R.L.(1987), "Finite element analysis of linear shell problems", Proc. Of the Mathematics in Finite Elements and Applications, Whiteman, J.R.(ed.), Academic Press, New York, 191-203.
- Taylor, R.L. and Simo, J.C.(1985), "Bending and membrane element for analysis of thick and thin shells", Proceedings of the NUMETA 85 Conference, Middleton J. and Pande G.N. (eds.), Balkeman Rotterdam, 587-591.
- Wilson, E.L. and lbrahimbegovic, A.(1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses" , Finite Elements in Anal. Desg., 7, 229-241. https://doi.org/10.1016/0168-874X(90)90034-C
- Zienkiewicz, O.C. and Taylor, R.L.(1989), The Finite Element Method: Basic Formulation and Linear Problems, I, McGraw-Hill, London.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M.(1971), "Reduced integration technique in general analysis of plates and shells" , Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
Cited by
- An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304
- Analysis of 3D wall building structures dynamic response vol.22, pp.1, 2006, https://doi.org/10.12989/sem.2006.22.1.033
- Direct modification for non-conforming elements with drilling DOF vol.55, pp.12, 2002, https://doi.org/10.1002/nme.550
- The inter-element coupling effect of triangular flat shells vol.32, pp.7, 2015, https://doi.org/10.1108/EC-11-2014-0230
- Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
- Efficient remedy for membrane locking of 4-node flat shell elements by non-conforming modes vol.192, pp.16-18, 2003, https://doi.org/10.1016/S0045-7825(03)00203-2
- A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom vol.58, pp.14, 2003, https://doi.org/10.1002/nme.854
- A New, Efficient 8-Node Serendipity Element with Explicit and Assumed Strains Formulations vol.6, pp.4, 2005, https://doi.org/10.1080/155022891009486
- Geometry-dependent MITC method for a 2-node iso-beam element vol.29, pp.2, 2008, https://doi.org/10.12989/sem.2008.29.2.203
- Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893
- Finite- and boundary-element linear and nonlinear analyses of shells and shell-like structures vol.38, pp.8, 2002, https://doi.org/10.1016/S0168-874X(01)00103-2
- Analysis of shear wall with openings using super elements vol.25, pp.8, 2003, https://doi.org/10.1016/S0141-0296(03)00041-5
- Efficient three-dimensional seismic analysis of a high-rise building structure with shear walls vol.27, pp.6, 2005, https://doi.org/10.1016/j.engstruct.2005.02.006
- Hybrid/mixed assumed stress element for anisotropic laminated elliptical and parabolic shells vol.45, pp.11, 2009, https://doi.org/10.1016/j.finel.2009.06.004
- A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements vol.33, pp.3, 2016, https://doi.org/10.1108/EC-04-2015-0102
- Non-conforming modes for improvement of finite element performance vol.14, pp.5, 1999, https://doi.org/10.12989/sem.2002.14.5.595
- Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions vol.29, pp.6, 1999, https://doi.org/10.12989/sem.2008.29.6.643
- A refined finite element for first-order plate and shell analysis vol.40, pp.2, 1999, https://doi.org/10.12989/sem.2011.40.2.191
- 복합적층 원통형 쉘의 단부보강 효과 연구 vol.3, pp.2, 2012, https://doi.org/10.11004/kosacs.2012.3.2.047
- Benchmark tests of MITC triangular shell elements vol.68, pp.1, 1999, https://doi.org/10.12989/sem.2018.68.1.017