FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING

5급와동의 복합레진 충전에 관한 유한요소법적 응력분석

  • Um, Chung-Moon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Kwon, Hyuk-Choon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Son, Ho-Hyun (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Cho, Byeong-Hoon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Rim, Young-Il (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 엄정문 (서울대학교 치과대학 치과보존학교실) ;
  • 권혁춘 (서울대학교 치과대학 치과보존학교실) ;
  • 손호현 (서울대학교 치과대학 치과보존학교실) ;
  • 조병훈 (서울대학교 치과대학 치과보존학교실) ;
  • 임영일 (서울대학교 치과대학 치과보존학교실)
  • Published : 1999.04.06

Abstract

The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

Keywords

Acknowledgement

Supported by : 서울대학교병원