Abstract
The microstructural evolution during mechanical alloying of elemental Fe and Si powders, average composition $Fe_{30}Si_{70}$ and $Fe_{50}Si_{50}$, has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Differential scanning calorimetry (DSC). Mechanical alloying was performed by using a SPEX 8000 Mixer/Mill under argon atmosphere with/without hexane as a process control agent (PCA). In the presence of PCA, the milling process was dominated by fracture resulting in the decrease in particle size to about $1{\mu}m$. The structural development with milling time depended on the average composition of starting powders. The mixture of $Fe_{50}Si_{50}$ and $Fe_{30}Si_{70}$ resulted in the formation of FeSi(${\varepsilon}$ - phase) and $FeSi_2$(${\beta}$ - phase), respectively. In the case of $Fe_{33.3}Si_{66.7}$, a mixture and $FeSi_2({\beta})$ was formed. These results were discussed by considering the thermodynamics and kinetics concerning the milling process.