Effects of α-Linolenic, Eicosapentaenoic and Docosahexaenoic Acids on the Content and Fatty Acid Composition of Brain Phospholipid in Rats

  • Cha, Jae-Young (Faculty of Natural Resources and Life Sciences, Dong-A University) ;
  • Cho, Young-Su (Faculty of Natural Resources and Life Sciences, Dong-A University)
  • Received : 1999.04.19
  • Published : 1999.06.30

Abstract

The effects of dietary n-3 fatty acids, ${\alpha}$-linolenic acid (18:3), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6), on brain phospholipid content and fatty acid composition were compared in rats fed with a diet containing constant ratios of saturated fatty acid/monounsaturated fatty acid/polyunsaturated fatty acid (PUFA) and n-3/n-6. The dietary fat in each diet was added at the level of 10%. In each diet, n-3 PUFA comprised two-thirds of the PUFA and the remaining one-third was linoleic acid (18:2). Dietary fat containing linoleic acid as the sole source of PUFA was also given to the control group. The content of brain phospholipid in the three n-3 PUFA groups was significantly lower than that of the linoleic acid group. This reduction was greater in the EPA and DHA groups than in the ${\alpha}$-linolenic acid group. The decrease in phospholipid content in rats fed n-3 fatty acid-rich diets was largely due to the decrease in the phosphatidylethanolamine fraction. Each dietary n-3 PUFA was found to affect the fatty acid composition of brain phospholipids; the most pronounced alteration was observed in phosphatidylethanolamine fraction. Furthermore, the proportion of DHA in the phosphatidylethanolamine fraction tended to be higher in the DHA group than in other PUFA groups. In conclusion, dietary ${\alpha}$-linolenic acid, EPA and DHA can influence the phospholipid content, phospholipid subclass, and fatty acid composition in rat brain.

Keywords