Arabidopsis AHL Gene Encodes a 3'(2'),5'-Bisphosphate Nucleotidase Sensitive to Toxic Heavy Metal Ions

  • Cheong, Jong-Joo (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon, Hawk-Bin (Molecular Genetics Division, National Institute of Agricultural Science and Technology)
  • Received : 1999.12.06
  • Published : 1999.12.31

Abstract

Arabidopsis AHL gene contains 4 exons encoding a putative protein highly homologous to the yeast salt-sensitive enzyme HAL2, a 3'(2'),5'-bisphosphate nucleotidase involving in reductive sulfate assimilation. AHL cDNA complemented yeast met22 (hal2) mutant. AHL fusion protein expressed in E. coli exhibited $Mg^{2+}$-dependent, 3'-phosphoadenosine 5'-phosphate (PAP)-specific phosphatase activity. $Li^+,\;Na^+,\;K^+$ and $Ca^{2+}$ ions inhibit the enzyme activity by competing with $Mg^{2+}$ for the active site of the enzyme. The enzyme activity was also sensitive to ${\mu}M$ concentrations of toxic heavy metal ions such as $Cd^{2+},\;Cu^{2+}$ and $Zn^{2+}$, but was not recovered by addition of more $Mg^{2+}$ ions, suggesting that these ions inactivate the enzyme with a mechanism other than competition with $Mg^{2+}$ ions. Inhibition of the AHL enzyme activity may result in accumulation of PAP, which is highly toxic to the cell. Thus, the AHL enzyme could be one of the intial targets of heavy metal toxicity in plants.

Keywords