DOI QR코드

DOI QR Code

Computation of unsteady wind loading on bluff bodies using a discrete vortex method

  • Taylor, I.J. (Department of Aerospace Engineering, University of Glasgow) ;
  • Vezza, M. (Department of Aerospace Engineering, University of Glasgow)
  • Published : 1999.12.25

Abstract

A discrete vortex method (DVM) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady, incompressible, separated flows around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow. This paper gives a brief description of the method and presents the results of calculations on static and transversely oscillating square section cylinders. The results demonstrate that the method successfully predicts the character of the flow field at different angles of incidence for the static case. Vortex lock-in around the resonance point is successfully captured in the oscillatory cases. It is concluded that the vortex method results show good agreement, both qualitatively and quantitatively, with results from various experimental data.

Keywords

References

  1. Bearman, P.W. and Obasaju, E.D. (1982), "An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders" , JI. Fluid Mech., 119, 297-321. https://doi.org/10.1017/S0022112082001360
  2. Bearman, P.W. and Luo, S.C. (1988), "Investigation of the aerodynamic instability of a square-section cylinder by forced oscillation", Jl. Fluids Struc., 2, 161-176. https://doi.org/10.1016/S0889-9746(88)80017-3
  3. Bergstrom, D.J. and Wang, J. (1997), "Discrete vortex method of flow over a square cylinder", Jl. Wind Eng. Ind. Aerodyn., 67-68 37-49. https://doi.org/10.1016/S0167-6105(97)00061-5
  4. Proc. 2nd Int. Canf., on CWE (CWE 96), Fort Collins, Colorado, USA, 4-8 Aug. 1996.
  5. Bienkiewicz, B. and Kutz, R.F. (1990), "Applying the discrete vortex method to flow about bluff bodies" , Jl. Wind Eng. Ind. Aerodyn., 36, 1011-1020. https://doi.org/10.1016/0167-6105(90)90097-V
  6. Bienkiewicz, B. and Kutz, R.F. (1993), "Aerodynamic loading and flow past bluff bodies using discrete vortex method" , JI. Wind Eng. Ind. Aerodyn., 46-47, 619-628. https://doi.org/10.1016/0167-6105(93)90330-Q
  7. Carrier, J., Greengard, L. and Rokhlin, V. (1988), "A fast adaptive multipole algorithm for particle simulations" , SIAM Jl. Sci. Stat. Camp., 9, 669-686. https://doi.org/10.1137/0909044
  8. Chorin, A.J. (1973), "Numerical study of slightly viscous flow" , Jl. Fluid Mech., 57, 785-796. https://doi.org/10.1017/S0022112073002016
  9. Clarke, N.R. and Tutty, O.R. (1994), "Construction and validation of a discrete vortex method for the two-dimensional incompressible navier-stokes equations" , Computers and Fluids, 23(6) 751-783. https://doi.org/10.1016/0045-7930(94)90065-5
  10. Deng, G.B., Piquet, J., Queutey, P. and Visonneau, M. (1994), "2-D computations of unsteady flow past a square cylinder with baldwin-lomax moder, Jl. Fluids Struc., 8, 663-680. https://doi.org/10.1016/S0889-9746(94)90140-6
  11. Esdu (1971), "Fluid forces, pressures and moments on rectangular blocks", Engineering Sciences Data Item Number 71016.
  12. Hasan, M.A.Z. (1989), "The near wake structure of a square cylinder", Int. Jl. Heat Fluid Flow, 10(4) 339-348. https://doi.org/10.1016/0142-727X(89)90024-6
  13. Igarashi, T. (1984), "Characteristics of the flow around a square prism", Bulletin of the JSME, 27(231) 1858-1865. https://doi.org/10.1299/jsme1958.27.1858
  14. Koumoutsakos, P. and Leonard, A. (1995), "High-resolution simulations of the flow around an impulsively started ylinder using vortex methods" , Jl. Fluid Mech., 296, 1-38. https://doi.org/10.1017/S0022112095002059
  15. Lee, B.E. (1975), "The effect of turbulence on the surface pressure field of a square prism", JI. Fluid Mech., 69(2) 263-282. https://doi.org/10.1017/S0022112075001437
  16. Lee, S. (1997), "Unsteady aerodynamic force prediction on a square cylinder using ${\kappa}-{\varepsilon}$ turbulence models", JI. Wind Eng. Ind. Aerodyn., 67-68, 79-90. https://doi.org/10.1016/S0167-6105(97)00064-0
  17. Leonard, A. (1980), ''Vortex methods for flow simulation", JI. Compo Phys., 37, 289-335. https://doi.org/10.1016/0021-9991(80)90040-6
  18. Lin, H. and Vezza, M. (1996), "A pure vortex method for simulating unsteady, incompressible, separated flows around static and pitching aerofoils" , Proc. 20th ICAS Conf., Sorrento, Italy, 8-13 September 1996, 2184-2193.
  19. Lin, H., Vezza, M. and Galbraith, R.A.McD. (1997a), "Discrete vortex method for simulating unsteady flow around pitching aerofoils" , AlAA JI., 35(3), 494-499. https://doi.org/10.2514/2.122
  20. Lin, H. (1997b), "Prediction of separated flows around pitching aerofoils using a discrete vortex method" , Ph.D. Thesis, Dept. of Aerospace Engineering, University of Glasgow, Scotland, UK.
  21. Lu, P.C., Chen, R.H., Cheng, C.M. and Huang, J.H. (1996), "Aerodynamics of a vibrating square prism in homogenous 'turbulent flows" , JI. Chinese Inst. Engs., 19(3), 353-361. https://doi.org/10.1080/02533839.1996.9677796
  22. Murakami, S. and Mochida, A. (1995), "On turbulent vortex shedding flow past 2D square cylinder predicted by CFD" , JI. Wind Eng. Ind. Aerodyn., 54-55, 191-211. https://doi.org/10.1016/0167-6105(94)00043-D
  23. Nakamura, Y. and Mizota, T., (1975), "Unsteady lifts and wakes of oscillating rectangular prisms" , Jl. Eng. Mech. Div., ASCE 101, 855-871.
  24. Naudascher, E., Weske, J.R. and FEY, B. (1981), "Exploratory study on damping of galloping vibrations", Jl. Wind Eng. Ind. Aerodyn. , 8, 211-222. https://doi.org/10.1016/0167-6105(81)90020-9
  25. Norberg, C. (1993), "Flow around rectangular cylinders : Pressure forces and wake frequencies", Jl. Wind Eng. Ind. Aerodyn., 49(1-3), 187-196. https://doi.org/10.1016/0167-6105(93)90014-F
  26. Obasaju, E.D. (1983), "An investigation of the effects of incidence on the flow around a square section cylinder" , Aero. Quarterly, 34, 243-259. https://doi.org/10.1017/S0001925900009768
  27. Otsuki, Y., Washizu, K., Tomizawa, H. and Ohya, A. (1974), "A note on the aeroelastic instability of a prismatic bar with square cross section" , Jl. Sound Vib ., 34(2), 233-248. https://doi.org/10.1016/S0022-460X(74)80307-X
  28. Puckett, E.G. (1993), ''Vortex methods : An introduction and survey of selected research topics", Incompressible Computational Fluid Dynamics, (ed. M.D. Gunzburger and R.A. Nicolaides), Cambridge University Press.
  29. Sarpkaya, T. (1989), "Computational methods with vortices - The 1988 freeman scholar lecture" , Jl. Fluids Eng. , 111, 5-52. https://doi.org/10.1115/1.3243601
  30. Taylor, I.J. and Vezza, M. (1997), "Application of a zonal decomposition algorithm, to improve the computational operation count of the discrete vortex method calculation", G. U. Aero Report No.9711, Dept. of Aerospace Engineering, University of Glasgow, Scotland, UK.
  31. Taylor, I.J. (1999), "Study of bluff body flow fields and aeroelastic stability using a discrete vortex method", Ph.D. Thesis, Dept. of Aerospace Engineering, University of Glasgow, Scotland, UK. (Submitted for examination January 1999).
  32. Vickery, B.J. (1966), "Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream" , Jl. Fluid Mech., 25(3), 481-494. https://doi.org/10.1017/S002211206600020X
  33. Vezza, M. (1992), "A new vortex method for modelling two-dimensional, unsteady incompressible, viscous flows", G. U. Aero Report No. 9245, Dept. of Aerospace Engineering, University of Glasgow, Scotland, UK.
  34. Walther, J.H. and Larsen, A. (1997), "Two dimensional discrete vortex method for application to bluff body aerodynamics", Jl. Wind Eng. Ind. Aerodyn. 67-68 183-193. https://doi.org/10.1016/S0167-6105(97)00072-X
  35. Proc. 2nd Int. Conf. on CWE (CWE 96), Fort Collins, Colorado, USA, 4-8 Aug. 1996.
  36. Wilkinson, R.H. (1981), "Fluctuating pressures on an oscillating square prism. Part 1 : Chordwise distribution of fluctuating pressure" , Aero. Quarterly, 32(2). 97-110. https://doi.org/10.1017/S0001925900009069
  37. Yu, D. and Kareem, A. (1997), "Numerical simulation of flow around rectangular prism", Jl. Wind Eng. Ind. Aerodyn., 67-68, 195-208. https://doi.org/10.1016/S0167-6105(97)00073-1

Cited by

  1. AN ANALYTICAL SOLUTION OF FLUID–STRUCTURE COUPLING OSCILLATION IN ONE-DIMENSIONAL IDEAL CONDITION UNDER SMALL DISTURBANCE vol.255, pp.3, 2002, https://doi.org/10.1006/jsvi.2002.5193