References
- Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
- Bowles, J.E. (1974), Analysis and Computer Methods in Foundation Engineering, McGraw-Hill Co., Inc., New York, N.Y., 147-186, 1974.
- Bowles, J.E. (1977), Foundation Analysis and Design, McGraw-Hill Co., Inc., New York, 2nd. Edn., 276-285.
- Cheung, Y.K. and Nag, D.K. (1968), "Plates and beams on elastic foundation-linear and nonlinear behavior" , Geotechnique, 18, 250-260. https://doi.org/10.1680/geot.1968.18.2.250
- Cook, R.D. (1982), Concepts and Applications of Finite Element Analysis, Wiley, New York, 2nd. Edn.
- Eisenberger, M. and Yankelevsky, D.Z. (1985), "Exact stiffness matrix for beams on elastic foundation", Comput. & Struct., 21(6), 1355-1359. https://doi.org/10.1016/0045-7949(85)90189-0
- Gendy, A.S., Saleeb, A.F. and Chang, T.Y.P. (1992), "Generalized thin-walled beam models for flexural-torsional analysis", Comput. & struct., 42(4), 531-550. https://doi.org/10.1016/0045-7949(92)90120-O
- Gendy, A.S. and Saleeb, A.F. (1994), "Generalized mixed finite element model for pre- and post-quasistatic buckling response of framed structures" , Int. J. Num. Meth. Eng., 37, 297-322. https://doi.org/10.1002/nme.1620370208
- Hughes, T.J.R, Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates" , Nucl. Engng. Design, 46, 303-322. https://doi.org/10.1016/0029-5493(78)90017-1
- Malkus, D.S. and Hughes, T.J.R (1978), "Mixed finite element method - reduced and selective integration techniques: A unification of concepts" , Comput. Meths. Appl. Mech. Engng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
- Miranda, C. and Nair, K. (1966), "Finite elements on elastic foundation" , J. Struct. Div., ASCE 92(ST 2), 131-142.
- Noor, A.K. and Peters, J.M. (1981), "Mixed model and redeced/selective integration displacement models for nonlinear analysis of curved beams", Int. J. Numer. Meths. Engng., 17, 615-631. https://doi.org/10.1002/nme.1620170409
- Pian, T.H.H. (1982), "Recent advances in hybrid/mixed finite elements", Proceedings of the International Conference of Finite Element Methods, Shanghai, China, 1-19.
- Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements" , Int. J. Numer. Meths. Engng., 18, 1679-1684. https://doi.org/10.1002/nme.1620181107
- Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Numer. Meths. Engng., 19, 1741-1752. https://doi.org/10.1002/nme.1620191202
- Pian, T.H.H. (1985), "Finite element based on consistently assumed stresses and displacements", J. of Finite Elements in Analysis and Design, 1, 131-140. https://doi.org/10.1016/0168-874X(85)90023-X
- Stolarski, H. and Belytschko, T. (1983), "Shear and membrane locking in 0 curved C-elements", Comput. Meths. Appl. Mech. Engng., 41, 172-176.
- Timoshenko, S. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill Co., Inc., New York, 3rd. Edn., 97-104.
- Timoshenko, S.P. (1956), Strength of Material, Part 2, 3 rd Edn., Van Nostrand Reinhold, New York.
- Ting, B.Y. (1982), "Finite beam on elastic foundation with restraints" , J. Struct. Div., ASCE, 108(ST3), 611-621.
- Ting, B.Y. and Mockry, E.F. (1984), "Beam on elastic foundation finite element", J. Struct. Engng., ASCE, 110(10), 2324-2339. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2324)
- Tong, P. and Rossettos, J.N. (1977), Finite Element Method: Basic Techniques and Implementation, Massachusetts Institute of Technology Press, Cambridge, Mass., 212-214.
- Washizu, K. (1982), Variational Method in Elasticity and Plasticity, Perganon Press, Oxford, 3rd. Edn..
Cited by
- An improved numerical method evaluating exact static element stiffness matrices of thin-walled beam-columns on elastic foundations vol.83, pp.23-24, 2005, https://doi.org/10.1016/j.compstruc.2005.02.024
- Accuracy Enhancement of Spatial Response of Hybrid/Mixed Curved Beams with Thin-Walled Sections vol.16, pp.1, 2015, https://doi.org/10.1080/15502287.2014.976675
- Displacement of Multiple, Coupled Timoshenko Beams in Discontinuous Nonlinear Elastic Contact, With Application to Rolling Mills vol.134, pp.5, 2012, https://doi.org/10.1115/1.4007185
- Assessment of secondary mountain hazards along a section of the Dujiangyan-Wenchuan highway vol.11, pp.1, 2014, https://doi.org/10.1007/s11629-012-2516-1
- Stiffness matrices of thin-walled composite beam with mono-symmetric I- and channel-sections on two-parameter elastic foundation vol.80, pp.7, 2010, https://doi.org/10.1007/s00419-009-0333-y
- Force-based derivation of exact stiffness matrix for beams onWinkler-Pasternak foundation vol.95, pp.2, 2015, https://doi.org/10.1002/zamm.201300030
- Shear deformable composite beams with channel-section on elastic foundation vol.36, 2012, https://doi.org/10.1016/j.euromechsol.2012.02.003
- Accuracy Enhancement of Hybrid/Mixed Models for Thin-Walled Beam Assemblages vol.13, pp.4, 2012, https://doi.org/10.1080/15502287.2012.682193
- Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations vol.38, pp.3, 2007, https://doi.org/10.1016/j.advengsoft.2006.08.016
- An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation vol.33, pp.5, 2009, https://doi.org/10.12989/sem.2009.33.5.573
- Improved nonlinear displacement-based beam element on a two-parameter foundation vol.19, pp.6, 2015, https://doi.org/10.1080/19648189.2014.965847
- Exact dynamic stiffness matrix of non-symmetric thin-walled beams on elastic foundation using power series method vol.36, pp.8, 2005, https://doi.org/10.1016/j.advengsoft.2005.02.003
- Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation vol.42, pp.1, 1999, https://doi.org/10.12989/sem.2012.42.1.039
- Nonlinear Winkler-based Beam Element with Improved Displacement Shape Functions vol.17, pp.1, 1999, https://doi.org/10.1007/s12205-013-1606-0
- Internal Force Analysis and Field Test of Lattice Beam Based on Winkler Theory for Elastic Foundation Beam vol.2019, pp.None, 1999, https://doi.org/10.1155/2019/5130654