DOI QR코드

DOI QR Code

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J. (Department of Civil Engineering, University of Toronto) ;
  • Tata, M. (Department of Civil Engineering, University of Toronto)
  • Published : 1999.07.25

Abstract

Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

Keywords

References

  1. Branson, D.E. (1963). "Design procedures for computing deflections" , J. ACI, 65(9), 730.
  2. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989). Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley & Sons.
  3. Hinton, E. and Owen, D.R.J. (1984). Finite Element Software for Plates and Shells, Pineridge Press Ltd., Swansea, U.K.
  4. Hu, H. and Schnobrich, W.C. (1990). "Nonlinear analysis of cracked reinforced concrete" , ACI Struct. J., 87(2), 199-207.
  5. Jofriet, J.C. and McNiece, M. (1971). "Finite element analysis of reinforced concrete slabs", J. Structural Div., ASCE, 97(ST-3), 785-806.
  6. Polak, M.A. and Vecchio, F.J. (1993). "Nonlinear analysis of reinforced concrete shells", J. Struct. Engrg., ASCE, 119(12), 3439-3462. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3439)
  7. Polak, M.A. and Vecchio, F.J. (1994). "Reinforced concrete shells elements subjected to bending and membrane loads" , ACI Struct. J., 91(2), 261-268.
  8. Scanlon, A. (1971). "Time dependent deflections of reinforced concrete slabs", Struct. Engrg. Report No. 38, Dept. of Civil Engrg., Univ. of Alberta.
  9. Scordelis, A.C. and Chan, E.C. (1987). "Nonlinear analysis of reinforced concrete shells" , Computer Applications in Concrete Technology, ACI SP-98, Amer. Concr. lnst., 25-57.
  10. Seracino, R. (1995). "Towards improving nonlinear analysis of reinforced concrete shells", M.A.Sc. Thesis, Dept. of Civil Engrg., Univ. of Toronto.
  11. Tata, M. (1996). "Simplified nonlinear finite element analysis of reinforced concrete plates", M.A.Sc. Thesis, Dept. of Civil Engrg., Univ. of Toronto.
  12. Vecchio, F.J. (1997). "Towards cyclic load modelling of reinforced concrete" , ACI Struct. J., (in press).
  13. Vecchio, F.J., Agostino, N. and Angelakos, B. (1993). "Reinforced concrete slabs subjects to thermal loads", CJCE, 20(5), 741-753. https://doi.org/10.1139/l93-099
  14. Vecchio, F.J. and Collins, M.P. (1986). "The modified compression field theory for reinforced concrete elements subjected to shearar", J. ACl, 83(2), 219-231.
  15. Vecchio, F.J. and Collins, M.P. (1988). "Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory" , ACI Struct. J., 85(3), 258-268.
  16. Vecchio, F.J. and Collins, M.P. (1993). "Compression response of cracked reinforced concrete", J. Struct. Engrg., ASCE, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  17. Vecchio, F.J. and Emara, B.E. (1992). "Shear deformations in reinforced concrete frames" , ACI Struct. J., 89(1), 46-56.
  18. Vecchio, F.J. and Tang, K. (1990). "Membrane action in reinforced concrete slabs", CJCE, 17(5), 686- 697. https://doi.org/10.1139/l90-082

Cited by

  1. Stiffness of reinforced concrete slabs subjected to torsion vol.47, pp.1-2, 2014, https://doi.org/10.1617/s11527-013-0057-x
  2. -Version nonlinear analysis of RC beams and slabs strengthened with externally bonded plates vol.42, pp.8-9, 2006, https://doi.org/10.1016/j.finel.2005.10.010
  3. 재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 vol.49, pp.4, 2007, https://doi.org/10.5389/ksae.2007.49.4.043
  4. 철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 vol.49, pp.6, 1999, https://doi.org/10.5389/ksae.2007.49.6.047
  5. 분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 vol.50, pp.2, 1999, https://doi.org/10.5389/ksae.2008.50.2.019
  6. Rocking Response of Unanchored Building Contents Considering Horizontal and Vertical Excitation vol.146, pp.9, 1999, https://doi.org/10.1061/(asce)st.1943-541x.0002735
  7. Review of the reinforcement sizing in the strength design of reinforced concrete slabs vol.27, pp.3, 1999, https://doi.org/10.12989/cac.2021.27.3.211
  8. Reinforcement of Flexural Members with Basalt Fiber Mortar vol.9, pp.4, 1999, https://doi.org/10.3390/fib9040026