DOI QR코드

DOI QR Code

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung (Department of Engineering Science, National Cheng Kung University) ;
  • Hsu, Chien-Min (Department of Arts-Craft, Tung Fung Junior College of Technology)
  • Published : 1999.05.25

Abstract

In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

Keywords

References

  1. Brazier, L.G. (1927), "On the flexure of thin cylindrical shells and other thin section" , Proceeding of the Royal Society, Series A, 116, 104-114. https://doi.org/10.1098/rspa.1927.0125
  2. Corona, E. and Kyriakides, S. (1988), "On the collapse of inelastic tubes under combined bending and pressure" , Int. J. Solids Struct., 24(5), 505-535. https://doi.org/10.1016/0020-7683(88)90005-4
  3. Fabian, O. (1981), "Elastic-plastic collapse of long tubes under combined bending, and pressure load", Ocean Engng., 3, 295-330.
  4. Fan, J. (1983), "A comprehensive numerical study and experimental verification of endochronic plasticity", Ph.D. Dissertation, Department of Aerospace Engineering and Applied Mechanics, University of Cincinnati.
  5. Gcllin, S. (1980), "The plastic buckling of long cylindrical shell under pure bending", Int. .J. Solids Struct., 16, 397-407. https://doi.org/10.1016/0020-7683(80)90038-4
  6. lkegami, K. and Ni-Itsu, Y. (1983), "Experimental evaluation of the interaction effect between plastic and creep deformation" , Plasticity Today Symposium, Udinc, Italy, June, 27-30.
  7. Krempl, E. (1979), "An experimental study of room-temperature rate-sensitivity, creep and relaxation of AISI type 304 stainless steer, J. Mech. Phy. Solids, 27, 363-375. https://doi.org/10.1016/0022-5096(79)90020-6
  8. Kujawski, D. and Krempl, E. (1981), "The rate(time)-dependent behavior of Ti-7Al-2Cb-1Ta titanium alloy at room temperature under quasi-static monotonic and cyclic loading" , ASME J. App!. Mech., 48, 55-63. https://doi.org/10.1115/1.3157592
  9. Kyriakides, S. and Ju, G.T. (1992), "Bifurcation and localization instabilities in cylindrical shells under bending-I. experiments", Int. J. Solids Struct., 29(9), 1117-1142. https://doi.org/10.1016/0020-7683(92)90139-K
  10. Kyriakides, S. and Ju, G.T. (1992), "Bifurcation and localization instabilities in cylindrical shells under bending-II predictions" , Int. J. Solids Struct., 29(9), 1143-1171. https://doi.org/10.1016/0020-7683(92)90140-O
  11. Kyriakides, S. and Shaw, P.K. (1982), "Response and stability of elastoplastic circular pipes under combined bending and external pressure" , Int. J. Solids Struct., 18(11) 957-973. https://doi.org/10.1016/0020-7683(82)90086-5
  12. Kyriakides, S. and Shaw, P.K. (1987), "Inelastic buckling of tubes under cyclic loads" , ASME J. Press. Vessel Technol., 109, 169-178. https://doi.org/10.1115/1.3264891
  13. Murakami, H. and Read, H.E. (1989), "A second-order numerical scheme for integrating the endochronic plasticity equations" , Comput. Struct., 31 , 663-672. https://doi.org/10.1016/0045-7949(89)90200-9
  14. Pan, W.F. and Chern, C.H. (1997), "Endochronic description for viscoplastic behavior of materials under multiaxial loading" , Int. J. Solids Struct., 34(17), 2131-2160. https://doi.org/10.1016/S0020-7683(96)00118-7
  15. Pan, W.F., Lee, T.H. and Yeh, W.C. (1996), "Endochronic analysis for finite elasto-plastic deformation and application to metal tube under torsion and rectangular block under biaxial compression" , Int. J. Plasticity, 12(10), 1287-1316. https://doi.org/10.1016/S0749-6419(95)00054-2
  16. Pan, W.F. , Wang, T.R. and Hsu, C.M. (1998), "A curvature-ovalization measurement apparatus for circular tubes under cyclic bending" , Experimental Mechanics, 38(2), 99-102. https://doi.org/10.1007/BF02321651
  17. Reddy, B.D. (1979), "An experimental study of the plastic buckling of circular cylinders in pure bending" , Int. J. Solids Struct., 15, 669-683. https://doi.org/10.1016/0020-7683(79)90066-0
  18. Reissner, E. and Weinitschke, H.J. (1963), "Finite pure bending of cylindrical tubes" , Q. Appl. Math., 20, 305-319. https://doi.org/10.1090/qam/148283
  19. Shaw, P.K. and Kyriakides, S. (1985), "Inelastic analysis of thin-walled tubes under cyclic bending" , Int. J. Solids Struct., 21(11), 1073-1100. https://doi.org/10.1016/0020-7683(85)90044-7
  20. Valanis, K.C. (1980), "Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic theory" , Archive Mechanics, 32, 171-191.

Cited by

  1. Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension vol.18, pp.5, 2004, https://doi.org/10.12989/sem.2004.18.5.627
  2. The Effect of Mean Curvature on the Response and Collapse of Thin-Walled Tubes under Cyclic Bending. vol.45, pp.2, 2002, https://doi.org/10.1299/jsmea.45.309
  3. Viscoplastic collapse of titanium alloy tubes under cyclic bending vol.11, pp.3, 2001, https://doi.org/10.12989/sem.2001.11.3.315
  4. Endochronic simulation for thermal viscoplastic and creep deformation vol.32, pp.1, 2009, https://doi.org/10.1080/02533839.2009.9671483
  5. The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending vol.38, pp.14, 2001, https://doi.org/10.1016/S0020-7683(00)00116-5
  6. An experimental study on creep deformation of thin-walled tubes under pure bending vol.9, pp.4, 2000, https://doi.org/10.12989/sem.2000.9.4.339
  7. Pure bending creep of SUS 304 stainless steel tubes vol.2, pp.6, 1999, https://doi.org/10.12989/scs.2002.2.6.461