DOI QR코드

DOI QR Code

Free vibration analysis of elliptic and circular plates having rectangular orthotropy

  • Chakraverty, S. (Institute of Sound and Vibration Research, University of Southampton) ;
  • Petyt, M. (Institute of Sound and Vibration Research, University of Southampton)
  • 발행 : 1999.01.25

초록

The natural frequencies and modes of free vibration of specially orthotropic elliptic and circular plates are analysed using the Rayleigh-Ritz method. The assumed functions used are two-dimensional boundary characteristic orthogonal polynomials which are generated using the Gram-Schmidt orthogonalization procedure. The first five natural frequencies are reported here for various values of aspect ratio of the ellipse. Results are given for various boundary conditions at the edges i.e., the boundary may be any of clamped, simply-supported or fret. Numerical results are presented here for several orthotropic material properties. For rectilinear orthotropic circular plates, a few results are available in the existing literature, which are compared with the present results and are found to be in good agreement.

키워드

참고문헌

  1. Bert, C.W. (1976), "Dynamics of composite and sandwich panels-parts I and II", Shock Vibration Digest, 8, 37-48, 15-24.
  2. Bert, C.W. (1979), "Recent research in composite and sandwich plate dynamics", Shock Vibration Digest, 11, 13-23.
  3. Bert, C.W. (1980), "Vibration of composite structures", In Recent Advances in Structural Dynamics, 2 (Ed. by M. Petyt), Southampton, England, 693-712.
  4. Bert, C.W. (1982), "Research on dynamics of composite and sandwich plates, 1979-1981", Shock Vibration Digest, 14, 17-34.
  5. Bert, C.W. (1985), "Research on dynamic behavior of composite and sandwich plates-IV", Shock Vibration Digest, 17, 3-15.
  6. Bert, C.W. (1991), "Research on dynamic behavior of composite and sandwich plates-V: part I", Shock Vibration Digest, 23, 3-14.
  7. Bhat, R.B. (1985), "Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method", J. Sound Vib., 102, 493-499. https://doi.org/10.1016/S0022-460X(85)80109-7
  8. Bhat, R.B. (1987), "Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables", J. Sound Vib., 114, 65-71. https://doi.org/10.1016/S0022-460X(87)80234-1
  9. Chakraverty, S. (1992), "Numerical solution of vibration of plates", Ph.D. Thesis, Department of Applied Mathematics, University of Roorkee, Roorkee-247 667, U.P., India.
  10. Chakraverty, S. (1996), "An efficient method for finding deflection of circular and elliptic plates", J. Inst. Engrs. (India), 77, 7-11.
  11. Chakraverty, S. and Chakrabarti, S.C. (1993), "Deflection of circular plate using orthogonal polynomials", ISlAM Conference, Univ. of Roorkee, India.
  12. Chakraverty, S. and Petyt, M. (1997), "Natural frequencies for free vibration of non-homogeneous elliptic and circular plates using two dimensional orthogonal polynomials", Applied Mathematical. Modeling, 21, 399-417. https://doi.org/10.1016/S0307-904X(97)00028-0
  13. Dickinson, S.M. and Blasio, A DI. (1986), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates", J. Sound Vib., 108, 51-62. https://doi.org/10.1016/S0022-460X(86)80310-8
  14. Dong, S.B. and Lopez, A. B. (1985), "Natural vibrations of a clamped circular plate with rectilinear orthotropy by least-squares collocation", Int. J. Solids Struc., 21, 515-526. https://doi.org/10.1016/0020-7683(85)90012-5
  15. Irie, T. and Yamada, G. (1979), "Free vibration of an orthotropic elliptical plate with a similar hole", Bull. Japan Soc. Mech. Engrs., 22, 1456-1462. https://doi.org/10.1299/jsme1958.22.1456
  16. Irie, T., Yamada, G and Kobayashi, Y. (1983), "Free vibration of circular-segment-shaped membranes and plates of rectangular orthotropy", J. Acoust. Soc. Amer., 73, 2034-2040. https://doi.org/10.1121/1.389570
  17. Kim, C.S. and Dickinson, S.M. (1987), "The flexural vibration of rectangular plates with point supports", J. Sound Vib., 117, 249-261. https://doi.org/10.1016/0022-460X(87)90537-2
  18. Kim, C.S. and Dickinson, S.M. (1989), "On the lateral vibration of thin annular and circular composite plates subject to certain complicating effects", J. Sound Vib., 130, 363-377. https://doi.org/10.1016/0022-460X(89)90063-1
  19. Kim, C.S. and Dickinson, S.M. (1990), "The free flexural vibration of right triangular isotropic and orthotropic plates", J. Sound Vib., 141, 291-311. https://doi.org/10.1016/0022-460X(90)90841-M
  20. Lam, K.Y., Liew, K.M. and Chow, S.T. (1990), "Free vibration analysis of isotropic and orthotropic triangular plates", Int. J. Mech. Sci., 32, 455-464. https://doi.org/10.1016/0020-7403(90)90172-F
  21. Laura, P.A.A, Gutierrez, R.H. and Bhat, R.B. (1989), "Transverse vibration of a trapezoidal cantilever plate of variable thickness", AIAA J., 27, 921-922. https://doi.org/10.2514/3.10201
  22. Leissa, A.W. (1969), Vibration of Plates, NASA SP 160. U.S. Government Printing Office, Washington, D.C.
  23. Leissa, A. W. (1978), "Recent research in plate vibrations: 1973-76: complicating effects", Shock Vibration Digest, 10, 21-35.
  24. Leissa, A. W. (1981), "Plate vibration research, 1976-80: complicating effects", Shock Vibration Digest, 13, 19-36.
  25. Leissa, A. W. (1987), "Recent studies in plate vibrations: 1981-85 Part II. complicating effects", Shock Vibration Digest, 19, 10-24.
  26. Liew, K.M. and Lam, K.Y. (1990), "Application of two dimensional plate functions to flexural vibrations of skew plates", J. Sound Vib., 139, 241-252. https://doi.org/10.1016/0022-460X(90)90885-4
  27. Liew, K.M. Lam, K.Y. and Chow, S.T. (1990), "Free vibration analysis of rectangular plates using orthogonal plate functions", Comput. Struct., 34, 79-85. https://doi.org/10.1016/0045-7949(90)90302-I
  28. McNitt, R.P. (1962), "Free vibration of a clamped elliptical plate", J. Aero. Sci., 29, 1124-1125.
  29. Narita, Y. (1983), "Flexural vibrations of clamped polygonal and circular plates having rectangular orthotropy", J. Appl. Mech. Trans. ASME, 50, 691-692. https://doi.org/10.1115/1.3167117
  30. Narita, Y. (1985), "Natural frequencies of free, orthotropic elliptical plates", J. Sound Vib., 100, 83-89. https://doi.org/10.1016/0022-460X(85)90344-X
  31. Narita, Y. (1986), "Free vibration analysis of orthotropic elliptical plates resting on arbitrary distributed point supports", J. Sound Vib., 108, 1-10. https://doi.org/10.1016/S0022-460X(86)80306-6
  32. Rajappa, N.R. (1963), "Free vibration of rectangular and circular orthotropic plates", AIAA J., 1, 1194-1195. https://doi.org/10.2514/3.1756
  33. Sakata, T. (1976), "A reduction method for problems of vibration of orthotropic plates", J. Sound Vib., 48, 405-412. https://doi.org/10.1016/0022-460X(76)90065-1
  34. Sakata, T. (1979), "Reduction methods for problems of vibration of orthotropic plates part I: exact methods", Shock Vibration Digest, 5, 19-26.
  35. Sakata, T. (1979), "Reduction methods for problems of vibration of orthotropic plates part II: generalized reduction method for generally orthotropic plates with arbitrary shape", Shock Vibration Digest, 6, 19-22.
  36. Singh, B. and Chakraverty, S. (1991), "Transverse vibration of completely free elliptic and circular plates using orthogonal polynomials in Rayleigh-Ritz method", Int. J. Mech. Sci., 33, 741-751. https://doi.org/10.1016/0020-7403(91)90069-F
  37. Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of transverse vibration of elliptic plates", Comput. Struc., 43, 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
  38. Singh, B. and Chakraverty, S. (1992), "Transverse vibration of simply-supported elliptic and circular plates using orthogonal polynomials in two variables", J. Sound Vib., 152, 149-155. https://doi.org/10.1016/0022-460X(92)90071-5
  39. Singh, B. and Chakraverty, S. (1992), "Transverse vibration of triangular plates using characteristic orthogonal polynomials in two variables", Int. J. Mech. Sci., 34, 947-955. https://doi.org/10.1016/0020-7403(92)90064-N
  40. Singh, B. and Chakraverty, S. (1993), "Transverse vibration of annular circular and elliptic plates using characteristic orthogonal polynomials in two dimensions", J. Sound Vib., 162, 537-546. https://doi.org/10.1006/jsvi.1993.1138
  41. Singh, B. and Chakraverty, S. (1994), "Flexural vibration of skew plates using orthogonal polynomials in two variables", J. Sound Vib., 173, 157-178. https://doi.org/10.1006/jsvi.1994.1224
  42. Singh, B. and Chakraverty, S. (1994), "Use of characteristic orthogonal polynomials in two dimensions for transverse vibrations of elliptic and circular plates with variable thickness", J. Sound Vib., 173, 289-299. https://doi.org/10.1006/jsvi.1994.1231
  43. Singh, B. and Chakraverty, S. (1994), "Boundary characteristic orthogonal polynomials in numerical approximation", Communications Num. Methods Engg., 10, 1027-1043. https://doi.org/10.1002/cnm.1640101209
  44. Timoshenko, S. and Woinowsky-Krieger, S. (1953), Theory of Plates and Shells, New York, McGrawHill Book Co.

피인용 문헌

  1. NATURAL FREQUENCIES OF ORTHOTROPIC, ELLIPTICAL AND CIRCULAR PLATES vol.259, pp.3, 2003, https://doi.org/10.1006/jsvi.2002.5278
  2. Flexural transient response of elastically supported elliptical plates under in-plane loads using Mathieu functions vol.62, 2013, https://doi.org/10.1016/j.tws.2012.07.022
  3. Effect of elastic foundation on the vibration of orthotropic elliptic plates with varying thickness vol.42, pp.4, 2007, https://doi.org/10.1007/s11012-007-9059-5
  4. Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports vol.39, pp.25, 2002, https://doi.org/10.1016/S0020-7683(02)00494-8
  5. Vibration of circular Mindlin plates with concentric elastic ring supports vol.45, pp.3, 2003, https://doi.org/10.1016/S0020-7403(03)00059-6
  6. The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review 2017, https://doi.org/10.1177/1077546317694724
  7. Vibration of Rectangular Orthotropic Elliptic Plates of Quadratically Varying Thickness Resting on Elastic Foundation vol.126, pp.1, 2004, https://doi.org/10.1115/1.1640654
  8. On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness vol.226, pp.5, 2015, https://doi.org/10.1007/s00707-014-1272-4
  9. Vibration of non-homogeneous plates using two-dimensional orthogonal polynomials as shape functions in the Rayleigh—Ritz method vol.213, pp.7, 1999, https://doi.org/10.1177/095440629921300706
  10. Vibration of Nonhomogeneous Orthotropic Elliptic and Circular Plates With Variable Thickness vol.129, pp.2, 2007, https://doi.org/10.1115/1.2346695
  11. Dynamics of Rotating Composite Disc vol.7, pp.6, 1999, https://doi.org/10.1007/s42417-019-00155-8