References
- Bert, C.W. (1976), "Dynamics of composite and sandwich panels-parts I and II", Shock Vibration Digest, 8, 37-48, 15-24.
- Bert, C.W. (1979), "Recent research in composite and sandwich plate dynamics", Shock Vibration Digest, 11, 13-23.
- Bert, C.W. (1980), "Vibration of composite structures", In Recent Advances in Structural Dynamics, 2 (Ed. by M. Petyt), Southampton, England, 693-712.
- Bert, C.W. (1982), "Research on dynamics of composite and sandwich plates, 1979-1981", Shock Vibration Digest, 14, 17-34.
- Bert, C.W. (1985), "Research on dynamic behavior of composite and sandwich plates-IV", Shock Vibration Digest, 17, 3-15.
- Bert, C.W. (1991), "Research on dynamic behavior of composite and sandwich plates-V: part I", Shock Vibration Digest, 23, 3-14.
- Bhat, R.B. (1985), "Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method", J. Sound Vib., 102, 493-499. https://doi.org/10.1016/S0022-460X(85)80109-7
- Bhat, R.B. (1987), "Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables", J. Sound Vib., 114, 65-71. https://doi.org/10.1016/S0022-460X(87)80234-1
- Chakraverty, S. (1992), "Numerical solution of vibration of plates", Ph.D. Thesis, Department of Applied Mathematics, University of Roorkee, Roorkee-247 667, U.P., India.
- Chakraverty, S. (1996), "An efficient method for finding deflection of circular and elliptic plates", J. Inst. Engrs. (India), 77, 7-11.
- Chakraverty, S. and Chakrabarti, S.C. (1993), "Deflection of circular plate using orthogonal polynomials", ISlAM Conference, Univ. of Roorkee, India.
- Chakraverty, S. and Petyt, M. (1997), "Natural frequencies for free vibration of non-homogeneous elliptic and circular plates using two dimensional orthogonal polynomials", Applied Mathematical. Modeling, 21, 399-417. https://doi.org/10.1016/S0307-904X(97)00028-0
- Dickinson, S.M. and Blasio, A DI. (1986), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates", J. Sound Vib., 108, 51-62. https://doi.org/10.1016/S0022-460X(86)80310-8
- Dong, S.B. and Lopez, A. B. (1985), "Natural vibrations of a clamped circular plate with rectilinear orthotropy by least-squares collocation", Int. J. Solids Struc., 21, 515-526. https://doi.org/10.1016/0020-7683(85)90012-5
- Irie, T. and Yamada, G. (1979), "Free vibration of an orthotropic elliptical plate with a similar hole", Bull. Japan Soc. Mech. Engrs., 22, 1456-1462. https://doi.org/10.1299/jsme1958.22.1456
- Irie, T., Yamada, G and Kobayashi, Y. (1983), "Free vibration of circular-segment-shaped membranes and plates of rectangular orthotropy", J. Acoust. Soc. Amer., 73, 2034-2040. https://doi.org/10.1121/1.389570
- Kim, C.S. and Dickinson, S.M. (1987), "The flexural vibration of rectangular plates with point supports", J. Sound Vib., 117, 249-261. https://doi.org/10.1016/0022-460X(87)90537-2
- Kim, C.S. and Dickinson, S.M. (1989), "On the lateral vibration of thin annular and circular composite plates subject to certain complicating effects", J. Sound Vib., 130, 363-377. https://doi.org/10.1016/0022-460X(89)90063-1
- Kim, C.S. and Dickinson, S.M. (1990), "The free flexural vibration of right triangular isotropic and orthotropic plates", J. Sound Vib., 141, 291-311. https://doi.org/10.1016/0022-460X(90)90841-M
- Lam, K.Y., Liew, K.M. and Chow, S.T. (1990), "Free vibration analysis of isotropic and orthotropic triangular plates", Int. J. Mech. Sci., 32, 455-464. https://doi.org/10.1016/0020-7403(90)90172-F
- Laura, P.A.A, Gutierrez, R.H. and Bhat, R.B. (1989), "Transverse vibration of a trapezoidal cantilever plate of variable thickness", AIAA J., 27, 921-922. https://doi.org/10.2514/3.10201
- Leissa, A.W. (1969), Vibration of Plates, NASA SP 160. U.S. Government Printing Office, Washington, D.C.
- Leissa, A. W. (1978), "Recent research in plate vibrations: 1973-76: complicating effects", Shock Vibration Digest, 10, 21-35.
- Leissa, A. W. (1981), "Plate vibration research, 1976-80: complicating effects", Shock Vibration Digest, 13, 19-36.
- Leissa, A. W. (1987), "Recent studies in plate vibrations: 1981-85 Part II. complicating effects", Shock Vibration Digest, 19, 10-24.
- Liew, K.M. and Lam, K.Y. (1990), "Application of two dimensional plate functions to flexural vibrations of skew plates", J. Sound Vib., 139, 241-252. https://doi.org/10.1016/0022-460X(90)90885-4
- Liew, K.M. Lam, K.Y. and Chow, S.T. (1990), "Free vibration analysis of rectangular plates using orthogonal plate functions", Comput. Struct., 34, 79-85. https://doi.org/10.1016/0045-7949(90)90302-I
- McNitt, R.P. (1962), "Free vibration of a clamped elliptical plate", J. Aero. Sci., 29, 1124-1125.
- Narita, Y. (1983), "Flexural vibrations of clamped polygonal and circular plates having rectangular orthotropy", J. Appl. Mech. Trans. ASME, 50, 691-692. https://doi.org/10.1115/1.3167117
- Narita, Y. (1985), "Natural frequencies of free, orthotropic elliptical plates", J. Sound Vib., 100, 83-89. https://doi.org/10.1016/0022-460X(85)90344-X
- Narita, Y. (1986), "Free vibration analysis of orthotropic elliptical plates resting on arbitrary distributed point supports", J. Sound Vib., 108, 1-10. https://doi.org/10.1016/S0022-460X(86)80306-6
- Rajappa, N.R. (1963), "Free vibration of rectangular and circular orthotropic plates", AIAA J., 1, 1194-1195. https://doi.org/10.2514/3.1756
- Sakata, T. (1976), "A reduction method for problems of vibration of orthotropic plates", J. Sound Vib., 48, 405-412. https://doi.org/10.1016/0022-460X(76)90065-1
- Sakata, T. (1979), "Reduction methods for problems of vibration of orthotropic plates part I: exact methods", Shock Vibration Digest, 5, 19-26.
- Sakata, T. (1979), "Reduction methods for problems of vibration of orthotropic plates part II: generalized reduction method for generally orthotropic plates with arbitrary shape", Shock Vibration Digest, 6, 19-22.
- Singh, B. and Chakraverty, S. (1991), "Transverse vibration of completely free elliptic and circular plates using orthogonal polynomials in Rayleigh-Ritz method", Int. J. Mech. Sci., 33, 741-751. https://doi.org/10.1016/0020-7403(91)90069-F
- Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of transverse vibration of elliptic plates", Comput. Struc., 43, 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
- Singh, B. and Chakraverty, S. (1992), "Transverse vibration of simply-supported elliptic and circular plates using orthogonal polynomials in two variables", J. Sound Vib., 152, 149-155. https://doi.org/10.1016/0022-460X(92)90071-5
- Singh, B. and Chakraverty, S. (1992), "Transverse vibration of triangular plates using characteristic orthogonal polynomials in two variables", Int. J. Mech. Sci., 34, 947-955. https://doi.org/10.1016/0020-7403(92)90064-N
- Singh, B. and Chakraverty, S. (1993), "Transverse vibration of annular circular and elliptic plates using characteristic orthogonal polynomials in two dimensions", J. Sound Vib., 162, 537-546. https://doi.org/10.1006/jsvi.1993.1138
- Singh, B. and Chakraverty, S. (1994), "Flexural vibration of skew plates using orthogonal polynomials in two variables", J. Sound Vib., 173, 157-178. https://doi.org/10.1006/jsvi.1994.1224
- Singh, B. and Chakraverty, S. (1994), "Use of characteristic orthogonal polynomials in two dimensions for transverse vibrations of elliptic and circular plates with variable thickness", J. Sound Vib., 173, 289-299. https://doi.org/10.1006/jsvi.1994.1231
- Singh, B. and Chakraverty, S. (1994), "Boundary characteristic orthogonal polynomials in numerical approximation", Communications Num. Methods Engg., 10, 1027-1043. https://doi.org/10.1002/cnm.1640101209
- Timoshenko, S. and Woinowsky-Krieger, S. (1953), Theory of Plates and Shells, New York, McGrawHill Book Co.
Cited by
- NATURAL FREQUENCIES OF ORTHOTROPIC, ELLIPTICAL AND CIRCULAR PLATES vol.259, pp.3, 2003, https://doi.org/10.1006/jsvi.2002.5278
- Flexural transient response of elastically supported elliptical plates under in-plane loads using Mathieu functions vol.62, 2013, https://doi.org/10.1016/j.tws.2012.07.022
- Effect of elastic foundation on the vibration of orthotropic elliptic plates with varying thickness vol.42, pp.4, 2007, https://doi.org/10.1007/s11012-007-9059-5
- Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports vol.39, pp.25, 2002, https://doi.org/10.1016/S0020-7683(02)00494-8
- Vibration of circular Mindlin plates with concentric elastic ring supports vol.45, pp.3, 2003, https://doi.org/10.1016/S0020-7403(03)00059-6
- The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review 2017, https://doi.org/10.1177/1077546317694724
- Vibration of Rectangular Orthotropic Elliptic Plates of Quadratically Varying Thickness Resting on Elastic Foundation vol.126, pp.1, 2004, https://doi.org/10.1115/1.1640654
- On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness vol.226, pp.5, 2015, https://doi.org/10.1007/s00707-014-1272-4
- Vibration of non-homogeneous plates using two-dimensional orthogonal polynomials as shape functions in the Rayleigh—Ritz method vol.213, pp.7, 1999, https://doi.org/10.1177/095440629921300706
- Vibration of Nonhomogeneous Orthotropic Elliptic and Circular Plates With Variable Thickness vol.129, pp.2, 2007, https://doi.org/10.1115/1.2346695
- Dynamics of Rotating Composite Disc vol.7, pp.6, 1999, https://doi.org/10.1007/s42417-019-00155-8