Charge-discharge Characteristic of the Mg-Ni Hydrogen Storage Alloy System

MgNi계 수소흡장합금의 충방전특성

  • Oh, Myung-Hark (Department of Metallurgical Engineering, Pusan National University) ;
  • Chung, Won-Sub (Department of Metallurgical Engineering, Pusan National University) ;
  • Kim, In-Gon (Department of Advanced Materials Engineering, Dongeui University)
  • Published : 1999.09.15

Abstract

The charge-discharge characteristics of the $Mg_2Ni-x$ wt.%Nd (x = 0~3) electrodes were investigated. The electrodes were prepared by the mechanical grinding of the induction-melted $Mg_2Ni$ alloy powders with Ni and/or Nd using planetary ball mill apparatus. The discharge capacity of the $Mg_2Ni$ alloy increased with the increase in the nickel content. The electrode possessing 100 wt.% nickel powder showed the initial capacity of 760 mAh/g and the capacity decay with the cycle number was less than that of the 55 wt.% nickel powder. The Nd was added to this composition. It was found that the $Mg_2Ni-100$ wt.%Ni -0.2 wt.%Nd alloy showed an excellent charge-discharge cycle characteristics compared with the other reported Mg-Ni alloy system. The discharge capacity was 400 mAh/g after 70 cycles. Such an improved cycle life seems to be attributed to the improvement in the corrosion characteristics of the alloy. The anodic polarization curve of the $Mg_2Ni-100$ wt.%Ni-0.2 wt.%Nd alloy exhibited better passivating behavior than that of the $Mg_2Ni-100$ wt.%Ni.

Keywords