Analysis of the Change of Amino Acids by Abscisic acid and Polyamine Treatment in Radish Young Cotyledons

무우 유식물의 자엽에서 Abscisic acid와 Polyamine 처리에 의한 아미노산 변화의 분석

  • 조봉희 (수원대학교 자연과학대학 생명과학부)
  • Received : 1999.04.07
  • Published : 1999.10.25

Abstract

The changes of amino acids in the cotyledons of spring - and winter radishes were analysed during the abscisic acid (ABA). ABA plus cycloheximide (CH) and ABA plus polyamine (PA) treatment. The total contents of amino acids were increased in spring radishes, and decreased in winter radishes by ABA. The contents of hydrophilic amino acids, proline, glycine, serine and cysteine in spring radishes (expecially proline), and of cysteine, leucine and phenylalanine in winter radishes (expecially cysteine and leucine)were increased, CH treatment resulted in the accumulation of amino acids by the inhibition of new synthesized protein, which synthesized against ABA induced dehydration both of radishes. On the contrary, the contents of amino acids were decreased in spring radishes, and increased in winter radishes during PA treatment. These results indicated that the accumulated hydrophilic amino acids and new synthesized proteins induced the adaptation of dehydration against stress and the role of ABA in accelerating of stress adaptation was mediated by polyamines.

무우 유식물의 자엽에서 Abscisic acid(ABA). ABA plus cyeloheximide(CH)와 ABA plus polyamine(PA) 처리로 유도되는 아미노산의 변화를 분석하였다. ABA 처리로 봄무우에서는 총 아미노산의 농도가 증가되었고, 겨울무우에서는 감소되었다. 봄무우에서는 친수성 아미노산인 proiine, glycine, serine과 cysteine 등이 증가되었고(특히 proline), 반면 겨울무우에서는 cysteine, leucine와 phenylalanine이 증가되었다(특히 cysteine과 leucine). CH는 ABA가 유도시킨 탈수에 대항할 수 있는 단백질의 합성을 방해하여 아미노산의 축적을 초래하였다. PA처리는 반대로 봄무우에서는 총 아미노산의 농도가 감소되었고, 겨울무우에서는 증가되었다. 이상의 결과는 축적된 친수성 아미노산과 단백질이 스트레스에 대항하여 탈수의 적응을 유도하였고, PA은 ABA에 의한 탈수 스트레스의 적응능력을 조절한다고 본다.

Keywords

Acknowledgement

Supported by : 교육부 기초과학연구소

References

  1. Plant Physiol. v.91 B. P. cammue;W. F. Broekaert;J. T. Kellens;N. V. Raikhel;W. J. Peumans
  2. Kor. Biochem. J. v.27 S. O. Moon;K. L. Lim;B. H. cho
  3. J. Plant Physiol. v.134 H. V. Davis;R. A. Jefferies;L. Scobie
  4. J. Plant Physiol. v.10 E. Passen;A. Poljakoff-Mayer
  5. J. Plant Physiol. v.141 L. V. Rensburg; G. H. Krueger;H. Krueger
  6. Plant Physiol. v.85 P. C. LaRosa;P. M. Haseqawa;D. Rhodes;J. M. Clithero;A.-E. A. Wattad;R. A.Bresen
  7. Nature v.334 J. Gomez;d. Sanchez-Martinez;V. Stiefel;J. Rigan;P. Puigdomench;M. Pages
  8. Plant Physiol. v.90 N. K. Singh;D. E. Nelson;D. Kuhn;P. M. Hasegawa;R. A. Bressan
  9. Nature v.321 B. J. Cornelissan;H. R. Hooft;J. F.
  10. Ann. Rev. Plant Physiol. Plant Mol. Biol. v.40 P. T. Evans;R. L. Malmberg
  11. Ann. Rev. Plant Physiol. Plant Mol. Biol. v.36 T. A. Smith
  12. Plant Physiol. v.87 R. Pistocci;F. Keller;N. J. Bagni;P. C. Matile
  13. The Physiology of Polyamine v.11 A. W. Galston
  14. J. Exp. Bot. v.41 d. D. Songstad;D. R. dunca;J. M. Widholm
  15. Plant Physiol. v.92 R. krishnamurthy;K. A. Baghwat
  16. J. Plant Physiol. v.138 A. Saradhi;L. D. Daradhi
  17. Adv. Agron. v.20 W. H. Allaway
  18. Analytical Science Technology v.11 S. Y. Park;M. Y. Park;B. H. Cho