Prevalence of Leptospira interrogans in Wild Rodents in Korea

Min-Kee Cho¹, Sun-Ho Kee¹, Yung-Jin Kim¹, Yoon-Won Kim¹, Hyun-Jae Song², Ki-Joon Song³, Ho-Hoon Kim⁴ and Hee-Bok Oh⁴

¹Department of Microbiology, College of Medicine, Hallym University ²Health and Environment Institute of Chollanamdo, Korea ³Department of Microbiology, College of Medicine, Korea University, Korea ⁴Department of Microbiology, National Institute of Health, Korea

Leptospirosis has been known as endemic disease in Korea since 1984. Wild rodent, mostly *Apodemus agrarius*, has been known as an important source of leptospiral infection especially in rainy circumstances in harvest reason of rural area.

The infection rates of *Leptospira interrogans* in field rodents, *Apodemus agrarius*, was investigated by culture and PCR detection of leptospiral DNA, and compared with previous data. Furthermore, the serogroup and serovar were investigated.

Two hundred twenty two *Apodemus agrarius* were captured during October to December 1996. Spirohaetes were isolated from 22 (9.9%) and leptospiral DNA was detected in an additional six rodents (12.6%).

Subsequent cross-agglutinin absorption test, monoclonal antibody reactivity classified 21 cultures among 22 isolates as *Leptospira interrogans* serogroup Icterohemorrhagiae serovar lai.

The above data did not differ from previous survey in 1984 to 1987. There was no significant change of *Leptospira interrogans* infection in field rodents in Korea.

Key Word: Leptospira interrogans, Apodemus agrarius, PCR, Crossagglutinin absorption

Table 1. Isolation and PCR confirmation of L. interrogans from A. agrarius

Area where rodents collected	No. of rodents examined	No. of isolates (positive%)	PCR detect (positive%)
Central Korea	76	11 (14.5)	12 (15.8)
Kyumgi prov.	33	6 (18.2)	7 (21.2)
Kangwon prov.	34	4 (11.7)	4 (11.7)
Chungbuk prov.	9	1 (7.5)	1 (11.1)
Southern Korea	146	11 (7.5)	16 (11)
Chunbuk prov.	31	1 (3.2)	2 (6.5)
Chunnam prov.	115	10 (8.7)	14 (12.2)
Total	222	22 (9.9)	28 (12.6)

Received for Publication: 2000. 1. 18, Accepted for Publication: 2000. 1. 18

Corresponding author: Min-Kee Che, Department of Microbiology, College of Medicine, Hallym University

Min-Kee Cho, et al.

Table 2. Strains isolated

Strain No.	Originated from	Strain No.	Originated from
JR34	Chunnam Whasoon	NR3	Kangwon Chunchon
JR57	Chunnam Damyang		
JR58	"	NR4	Kangwon Wonju
JR62	Chunnam Chungmyung	NR6	Chungbuk Jechun
JR72	"	NR8	Kyungki Jungok
JR82	<i>"</i>	NR9	"
JR86	<i>"</i>	NR10	"
JR89	"	NR11	Kyungki Yeonchon
JR94	<i>"</i>	NR12	"
JR109	Chunman Kwangyang	NR13	"
CR3	Kangwon Chunchon	KR48	Junbuk Iksan
NR2	<i>"</i>		

Table 3. Reactivities of the isolates to monoclonal antibodies

Serovar (Strain) MAb	F20-C4-3	F52C2-2	F70C7-3	F70C20-2	F82C1-3	F82C2-2	F89C3-3
All 22 isolates	_	_	++++	_	++	++++	_
lai (HY10*)	_	_	+++	-	++	++++	
lai (017 [†])	_	_	++++	-	++	++++	_
yeonchon (HM3*)	++	++	+++	++	++	-	+++
hongchon (18R*)	++++		+++	-	_	++++	_
icterohemorrhagiae (RGA)	++++	++	++++	+++	-	-	_
copenhageni (M20)	++++	+	++++	++++	_	_	++
naam (Naam)	++	+	++++	-	-	++++	-
mwogolo (Mwogolo)	_	_	+++		-	+++	-

^{*}Reference strain isolated in Korea [†]Reference strain obtained from NIH Japan

Table 4. Cros	s-agglutinin	absorption	test o	of .	isolate	with	serovar	lai
---------------	--------------	------------	--------	------	---------	------	---------	-----

Isolate	Hyperimmune serum	Absorbing Culture	Residual homologous antibody titer after absorption (%)	Suspected serovar
JR 34	JR 34 Lai 017	Lai 017 JR 34	0.39 1.56	lai
JR 57	JR 57 Lai 017	Lai 017 JR 57	3.125 0.78	lai
JR 58	JR 58 Lai 017	Lai 017 JR 58	<0.78 0.78	lai
JR 77	JR 77 Lai 017	Lai 017 JR 77	3.125 <0.78	lai
NR 13	NR 13 Lai 017	Lai 017 NR 13	25 0.78	lai?
JR 82	JR 82 Lai 017	Lai 017 JR 82	1.56 <0.78	lai
JR 86	JR 86 Lai 017	Lai 017 JR 86	0.78 <0.78	lai
JR 89	JR 89 Lai 017	Lai 017 JR 89	0.78 <0.78	lai

Other 14 cultures had almost same pattern of cross-agglutinin absorption with serovar lai as above cultures except NR 13. (residual homolagous antibodies titer after absorption were less than 3%)

SUMMARY

The prevalence of *Leptospira interrogans* in field rodents, *Apodemus agrarius*, captured during October to December 1996 was 12.6%.

The above data did not differ from previous survey in 1984 to 1987.

Twenty one cultures among 22 isolates were identified as serovar lai by cross-agglutinin absorption test and monoclonal antibody reactivity.

REFERENCES

- Chang WH, Kim IS, Choi MS et al. Seroepidemiological survey of the leptospirosis in Korea, 1986-1991. J. Korean Soc. Microbiol. 28: 13-22, 1993.
- Cho MK. Characterization of Leptospira interrogans isolated in Korea and seroepidemiological study on leptospirosis (1984~

- 1987). J. Korean Med. Assoc. **31**: 612-622, 1988.
- Dikken H, Kmety E. Serological typing methods of leptospires. *Method in Microbiol.* 11: 260-295, 1978.
- Faine S. Guidelines for leptospirosis control. World Health Organization, Geneva. 1982.
- 5) Gravekamp C, Van de Kemp H, Carrington DS, et al. Detection of seven species of pathogenic leptospires by PCR using two sets of primers, *J. Gen. Microbiol.* 139: 1691-1700, 1993.
- 6) Oh HB, Chang WH, Cho MK, Seong WK, Park KS. Identification of new serovar yeonchon and hongchon belonging to Leptospira interrogans Icterohaemorrhagiae serogroup. J. Kroean Soc. Microbiol. 26: 253-262, 1991.
- Kmety E, Dikken H, Classification of the specis Leptospira interrogans and history of its serovars. University Press Gronin-

- gen. 17-22, 1993.
- Masuzawa T, Kumagai M, Shimizu T, Yanagihara Y. Classification of Leptospira interrogans serovar lai strain 017 by using monoclonal antibodies. J. Clin. Microbiol. 6: 2332-2337, 1988.
- Cho MK, Lee JH, Yoon, CS. et al. Serological analysis of Leptospira interrogans isolated in Korea using monoclonal an-
- tibodies and cross-agglutinin absorption test. J. Korean Soc. Microbiol. 24: 539-54, 1989.
- 10) Oh HB, Park KS, Seong WK. et al. Differentiation of Leptospira interrogans field strains isolated in Korea by restriction endonuclease DNA analysis, monoclonal antibodies and cross agglutinin absorption test. Report of NIH Korea. 27: 64-76, 1990.