=YL MSBAS e oW HXAH 28 ¥ [8 x

Ha2l0] 2= AMH 48A-12-13

Code Size Reduction and Execution Performance Improvement with Instruction Set
Architecture Design based on Non-homogeneous Register Partition

HEw- 3 E
(Young-Jun Kwon * Hyuk-Jae Lee)

Abstract - Embedded processors often accommodate two instruction sets, a standard instruction set and a compressed
instruction set. With the compressed instruction set, code size can be reduced while instruction count (and consequently
execution time) can be increased. To achieve code size reduction without significant increase of execution time, this
paper proposes a new compressed instruction set architecture, called TOE (Two Operations Execution). The proposed
instruction set format includes the parallel bit that indicates an instruction can be executed simultaneously with the next
instruction. To add the parallel bit, TOE instruction format reduces the destination register field. The reduction of the
register field limits the number of registers that are accessible by an instruction. To overcome the limited accessibility
of registers, TOE adapts non-homogeneous register partition in which registers are divided into multiple subsets, each
of which are accessed by different groups of instructions. With non-homogeneous registers, each instruction can access
only a limited number of registers, but an entire program can access all available registers. With efficient
non-homogeneous register allocator, all registers can be used in a balanced manner. As a result, the increase of code
size due to register spills is negligible. Experimental results show that more than 30% of TOE instructions can be
executed in parallel without significant increase of code size when compared to existing Thumb instruction set.

Key Words : Computer architecture, instruction set architecture (ISA), instruction-level parallelism, embedded system,

code size reduction, non-homogeneous register partition

1. Introduction The increase of the number of instructions can
increase execution time. To avoid a significant increase of

Embedded systems often require compact code size.
Otherwise, the chip area occupied by software can
increase and consequently demanding more manufacturing
cost. For code size reduction, commercial products, such
as ARM/Thumb [10] and MIPS16 [11] processors
accommodate two different instruction sets, a standard
32-bit instruction set and a compressed 16-bit instruction
set. The 32-bit instruction set is a complete instruction
set while 16-bit instruction ‘is derived from the 32-bit
instruction set by selecting frequently-used instructions
and converting them in 16-bit instruction format. By
using 16-bit instructions as many as possible, a
programmer can substantially reduce the overall program
size. For typical examples, the compressed code may
require around 70% of the space of the original code,
while using 40% more instructions [5].

a

* IE & B : MIPS Technologies Inc., Member of
Technical Staff
" @ ® B : Intel Corporation, Senior Engineer
B HTF : 1999% 10A 198
BR5ET : 19994 11A 118

REYL HSUYE A 0lF XAy B2 N I P WA

the execution time, this paper proposes a new 16-bit
compressed instruction set, called TOE (Two Operations
Execution). To exploit instruction level parallelism [6],

TOE instruction format includes one bit that indicates the
current instruction can be executed simultaneously with
the next instruction. Since parallel execution is decided
and explicitly specified by a hardware
scheduling is not required, unlike superscalar machines

compiler,

[6], thus keeping hardware complexity relatively low.

The addition of the parallel bit requires the reduction
of other fields, such as an opcode field or register
selection fields. The reduction of an opcode field might
not be desirable because it decreases the number of
16-bit instructions. If register selection fields is reduced,
the number of accessible registers for a given instruction
is reduced. For example, if the register selection field is
reduced to two bits (from three bits in the original
Thumb or MIPS16), then only four registers are
accessible regardless of the number of physically
available registers. This limited accessibility can reduce
the number of instructions that can be convertible to

1575

BARRIGLEE 48A% 12% 1999%F 127

16-bit instruction format.

This limitation of register accessibility can be relieved
by non-homogeneous registers [1,7] in which registers
are divided into multiple subsets, and then the access of
registers in each group are limited depending on the type
of instructions. At compile time, register allocation [9]
needs to balance the use of different groups of registers.
Also, it is desirable to allocate registers before instruction
scheduling so that the scheduler can identify TOE

of registers for an entire program. The reduction of
register selection field can allow the increase of other
fields, such as opcode field and immediate operand field.
With the increase of the opcode field, more instructions
can be included in 16-bit format, and consequently more
32-bit instructions can be convertible to 16-bit
instructions. The increase of immediate operand field also
increases the number of 16-bit convertible instructions.

In this paper, the saved bit due to the reduction of

instructions. This can be achieved by the register
allocation technique based on register-reuse chains [4, 3].

This paper is organized as follows. Section 2 presents
the TOE instruction set architecture. Section 3 explains
the register allocation for non-homogeneous partition.
Section 4 shows the evaluation results and Section 4
presents the conclusions.

2. Thumb and TOE Instruction Set Architecture

ARMTT processor can execute two different instruction
sets, 32-bit ARM instruction set and 16-bit Thumb
instruction set [5]. The Thumb instruction set is not a
complete instruction set but includes frequently-used
ARM instructions. A programmer can reduce code size
by converting a 32-bit ARM instruction to the
corresponding 16-bit Thumb instruction whenever
possible. However, it is not always possible to convert an
ARM instruction to a Thumb instruction because Thumb
is not a complete instruction set. In addition, the
reduction of register selection fields also prevents some
ARM instructions from being convertible to a Thumb
instruction. Since the register selection field is reduced to
3 bits in a Thumb instruction format, each Thumb
instruction can access at most eight registers (e.g. from
RO to R7). Thus, any ARM instruction that accesses
beyond the scope of Thumb register selection field (e.g.,
R11) cannot be convertible to a Thumb instruction.
Therefore, the limitation in the number of addressable
registers also significantly reduces the number of 16-bit
convertible instructions.

The limited accessibility can be improved by non-
homogeneous registers architecture which divides
registers into multiple subsets, and each subset is
associated with a group of instructions which can access
the registers in the subset. Thus, different subsets of
registers can be accessed by different groups of
instructions. Therefore, although each instruction can
access only a limited number of registers, an entire
program can access all registers. In addition, with a
well-optimized register allocator, all registers can be used
in a balanced manner.
allow to reduce the
register selection field without affecting the accessibility

Non-homogeneous registers

1576

register selection field is used as—the parallet-bit—as -well
as additional opcode field and/or immediate operand field.
The parallel bit indicates that the current instruction can
be executed simultaneously with the next instruction.
With the parallel bit, this paper enhances the Thumb
instruction set and proposes TOE (Two Operations
Execution) instructions. A TOE processor can execute
either 32-bit instructions or 16-bit instructions. The
32-bit instruction set is exactly the same as an ARM
instruction set, while the 16-bit instruction set is modified
from the Thumb instruction set in order to assist parallel
execution.

As shown in Fig. 1 (a), TOE supports the instruction
format with three register fields, where two serve as the
operands and the other serves as the destination register.
This format applies to the TOE instructions for addition
(ADD) and subtraction (SUB). The opcode field of the
instruction is seven bits in length. Two 3-bit operand
fields can access any of the eight general-purpose
registers, respectively. The 2-bit destination register field
can select one register out of four registers and the
remaining one bit is the parallel bit that signifies whether
the TOE instruction can be executed in parallel with the
next TOE instruction. As shown in Fig. 1 (b), TOE also
has the capacity to support the instruction format that
uses two register fields and one immediate value field.
Like the three-register format, there exist a 7-bit opcode
field, a parallel bit, and a 2-bit destination register field,
Since only one 3-bit source register field exists, the
remaining three bits of instruction represent an immediate
value. As another example shown in Fig. 1 (¢), for the
load/store instructions (LDR/STR), the instruction format
again reduces the destination register field to 2 bits, and
the parallel bit is added. In summary, for most TOE
instructions, one bit is reduced in the destination register
field in the Thumb instruction format, and the reduced bit
is used as the parallel bit.

The benefit of TOE instruction set can be explained in
a case when the TOE-aware core is connected to
high-speed 32-bit read-only memory (ROM). When two
16-bit TOE instructions are fetched from external
memory in one fetch cycle, the two instructions can be
executed together if specified as executable in parallel,
and without making one of them wait in the prefetch

L ’ [N

Opcode Source 1 Source 2 Dest. Parallel Bit
(a)
7 s [= [z [1]
Opcode immediate Source Dest. Paralle! Bit
(b)
5) 2 [1]
Opcode Address Dest. Paraliel Bit

(c)

Fig. 1 Examples of TOE instruction design: (a) instruction
format for three registers, (b) instruction format for
two registers and one immediate, and (c} instruction
format tor load/store operations.

buffer, in contrast to the Thumb-aware core. Without
any change in memory bandwidth, TOE might increase
the performance of the system. When connected to slow,
low-cost 32-bit ROM, the performance gain by TOE

might be overshadowed by the slow memory fetches.

3. Compiler Support for TOE instruction set and
Non-homogeneous Register Partition

The architecture based on non-homogeneous register
partition [1,7] can lead to an unbalanced use of registers
such that one register subset is heavily used while other
subsets have unused registers. For balancing the use of
different subsets of registers, an efficient register
allocator needs to be implemented. For the design of an
efficient non-homogeneous register allocator, it is
necessary to design an efficient homogeneous register
allocator first, and then extend it for non-homogeneous
registers.

Register allocation [9] is an important compile-time
optimization that maps variables and temporaries into
either registers or memory. The goal of register allocation
iS to map as many variables and temporaries into
registers as possible. One of the most widely used
register allocation techniques is based on the graph
coloring algorithm [9), and the limitation of this algorithm
comes from the fact that instructions are scheduled
before register allocation. When register allocation and
instruction scheduling are performed as separate tasks,
the optimal solution for one of the tasks can adversely
affect the solution to the other task. Thus, if instruction
scheduling is performed before register allocation,
additional constraints can be introduced to register
allocation, resulting in a non-optimal register allocation.

REYL HETMUR HE 0R X2 BY R HPH T WA

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

Recently, a new register allocation technique based on
register-reuse chains was proposed [3, 4]. In this
technique, registers are allocated prior to scheduling and,
consequently, this allows greater freedom in register
allocation optimization than the one based on graph
coloring. Register allocation in [3, 4] is a procedure to
decompose a dependence graph into register-reuse chains.
Each register reuse chain is a linked list of nodes where
each node is an assignment that represents the value of
the variable that is stored in the register. All values in
the same register-reuse chain are assigned to the same
register. For more detailed discussions about register
allocation based on register-reuse chains, refer to [3, 4, 8,
12].

Non-homogeneous register allocation can be implemented
by extending homogeneous register allocation. Recall that
non-homogeneous register architecture assigns a specific
group of registers to each instruction. Therefore, additional
constraints need to be integrated into homogeneous
register allocation to guarantee that each instruction
accesses a register in the proper group. The algorithm
consists of two main functions, a driver function and a
workhorse function. The driver function takes data
dependency graphs or directed acyclic graphs (DAGs) as
input. It visits each node in the DAGs in breadth first
search (BFS) order. If a node in the DAGs is not visited
yet, a new chain is created. Then, starting from the node,
the workhorse function is called to recursively search
nodes that use the same register set as the head node.
The found nodes, when they are not visited yet, are
attached to the chain and marked as visited. This
search-and-attach process is performed until no more
nodes can be attached to the current chain. The driver
function stops when all nodes in DAGs are visited. For
more discussions about register-reuse chain merging and
merging criterion to reduce additional dependencies, refer
to [12].

Fig. 2 shows the flow of register allocation and
instruction scheduling for the TOE-aware processors.
Note that variable register allocation is performed before
instruction scheduling to identify the instructions that can
be mapped to TOE instructions. Only then, the identified
TOE instructions can be scheduled to be executed in

[Variable Register Allocation —]

L Instruction Scheduling]

l Temporary Register Allocation]

Fig. 2 The flow of register allocation and instruction
scheduling for the TOE architecture.

1577

RELEMUIE 48A% 12 1999F 128

parallel. After instruction scheduling, temporary values are
assigned to registers. For a given instruction, the
dedicated destination registers are given high priority to
be selected.

4. Experimental Results

This section evaluates the efficiency of the TOE
architecture. The first result shows the percentage of

total instructions that can be mapped into TOE

instructions. The second evaluation shows the number of
TOE instructions that can be executed with one another
TOE instruction in parallel.

Fig. 3 shows the percentage of instructions that are
convertible to 16-bit instructions. For 10 benchmark
programs, the numbers of instructions convertible to TOE
are compared with Thumb. On average, the percentage of
instructions convertible to Thumb is 59.5%, while that of
TOE is 71.9%. This shows TOE leads to a significant
decrease of code size when compared with Thumb. Note
that, except fib (Fibonacci numbers generation), the
number of instructions convertible to TOE instructions is
higher than that of Thumb. The reason is that the
current register partition has R6-R9 as temporary
registers. If a program requires many registers and
frequently uses R8 and R9 after consuming lower number
registers, then the instructions using R8 and R9 are not
convertible to Thumb. In contrast, some instructions, such
as LDR and STR, using R8 and R9 as target destination
registers, can still be counted as TOE instruction. Thus,
depending on program characteristics, there can be more
TOE instructions than Thumb instructions, resulting in
higher encoding efficiency.

Fig. 4 shows the numbers of 16-bit convertible
instructions with a different register partition. In this
partition, lower-numbered registers are used as temporary
registers. The percentage of instructions convertible to
Thumb is 69.6% and that of TOE is 70.8%. Because
lower-numbered registers are used as temporary
registers, the compression ratio of Thumb is better than
the results shown in Fig. 3. Note that the actual code
size efficiency can be somewhat lower than these
numbers, because extra mode conversion instructions,
such as BX, are required to switch back and forth
between ARM and Thumb/TOE modes.

Fig. 5 and 6 show the percentage of total TOE
instructions that can be executed in parallel. For the
register partition for the results of Fig. 3, 33.4% of TOE
instructions can be executed in parallel, on average(see
Fig. 5). For the register partition for the results of Fig. 4,
32.1% of TOE instructions can be executed inparallel (see
Fig. 6). In the compiler used in this paper, the scope of
optimization is limited by a basic block [9], while the

1578

Num of compressible instructions /
Num of total Instructions

Benchmark programs

Fig. 3 Percentage of total instructions compressible into
Thumb and TOE format.

F:
k-]
g
it
g n]
_5 s g] @Thumb
% 3 B] | TOE

3 2 8
s a u
8 £ . .
5 3 [| |
E
S GNP P Sy

& Fgf @& EFSE f{&
¢
Benchmark programs

Fig. 4 Percentage of total instructions compressible into
Thumb and TOE format.

scope of code generation is limited by an extended basic
block [9]. For correct code generation, instructions cannot
be rescheduled across the boundary of an extended basic
block. Although the term extended is used in [9], the
extended basic block is, in fact, not a superset of a basic
block. Instead, it is often the case that a single basic
block contains the boundary of extended basic blocks.
Thus, the scope of the instruction scheduler is limited by
both basic blocks and extended basic biocks.
Consequently, the parallelism extracted by the compiler is
limited. The limited scope accounts for relatively small
number of parallel-executable TOE instructions. If a more
efficient paralle]l scheduler is available, a larger number of
TOE instructions can be executed in parallel, thus
achieving additional speedup.

5. Conclusions

This paper proposes a new instruction set architecture,
called TOE (Two Operations Execution), for embedded
system. The TOE instruction format includes the parallel
bit that indicates the instruction can be executed

cOoLPOOO000D
S23adR88s468

Num of parallel TOE instructions /
Num of TOE instructions

Benchmark programs

Fig. 5 Percentage of total TOE instructions executable in
parallel.

Num of paralle! TOE instructions /
Num of TOE instructions

Benchmark programs

Fig. 6 Percentage of total TOE instructions executable in
parallel.

simultaneously with the next instruction. More than 30%
of instructions can be executed in parallel while code size
is almost the same as Thumb. With more efficient
instruction scheduler, the number of parallel TOE
instructions can further increase. Depending on the
register set partition, the number of 16-bit convertible
instructions change significantly. Therefore, an efficient
way of finding an optimal register partitioning needs to
be developed.

2o E#

[1] G. Araujo and S. Malik, Optimal Code Generation
for Embedded Memory Non-homogeneous Register
Architectures, Proc. 1995 Int’l Symp. on Systems
Synthesis, 1995, pp. 36-41.

{21 ARM, An Introduction to Thumb, ARM, 1995.
http://www.arm.com

{3] D. Berson, R. Gupta, and M. Soffa, URSA: A
Unified Resource Allocator for Registers and
Functional Units in VLIW Architecture, Technical
Report 92-21, Univ. of Pittsburgh, Comp. Sci. Dept.,
Nov. 1992,

[4] D. Berson, R. Gupta, and M. Soffa, Resource

A=YL HeeiE HE oF X2e BE N YA = A

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

Spackling: A Framework for Integrating Register
Allocation in Local and Global Schedules, Proc.
IFIP WG 10.3 Working Conference on Parallel
Architectures and Compilation Techniques, 1994.

(5] S. Furber, ARM System Architecture, Addison
Wesley, New York, NY, 1996.

[6] J. Hennessy and D. Patterson, Computer
Architecture A Quantitative Approach, 2nd ed.,
Morgan Kaufmann, San Francisco, CA, 1996.

{71 S. Liao, Code Generation and Optimization for
Embedded Digital Signal Processors, Ph.D. Thesis,
MIT Dept. of EECS, Jan. 22, 1996.

[81 X. Ma, Non-homogeneous Register Allocation for
Embedded Processors, M.S. Thesis, Louisiana
Tech University, 1998.

[9]1 S. Muchnick, Advanced Compiler Design
Implementation, Morgan Kaufmann, San Francisco,
CA, 1997.

[10] S. Segars, K. Clarke, and L. Goudge, Embedded
Control Problems, Thumb, and the ARM7TDM]I,
IEEE Micro, vol. 15, no. 5, October 1995, pp.
22-30.

[11] D. Sweetman, See MIPS Run, Morgan Kaufmann,
San Francisco, CA, 1999.

[12] Y. Zhang, A Systematic Integration of Register
Allocation and Instruction Scheduling, Ph.D.
Dissertation, Louisiana Tech University, 1999.

A A 2 A

A R

19653 6¥ 179 4. 19883 A E&of M7iF&a &Y. 19%
3 Texas A&M W A4z Z2Q(T9). 19973 ~8A
MIPS Technologies Inc. Member of Technical Staff.
E-mail : kwon@mips.com

of & M(E & F)

19653 24 8 A 1987d AM&d AAFET 4. 19969
Purdue &R A7} 2 AFEFEI} AT, 19961-199
J Louisiana FZoisn Hitsty zus, 1998d ~EH A
Intel Senior Engineer.

E-mail :@ jasonl@ichips.intel.com

1579

