X AE MEBE Al HAH 4

48A-12-12

A Systematic Generation of Register-Reuse Chains

= i 5
(Hyuk-Jae Lee)

Abstract - In order to improve the efficiency of optimizing compilers, integration of register allocation and instruction
scheduling has been extensively studied. One of the promising integration techniques is register allocation based on
register-reuse chains. However, the generation of register-reuse chains in the previous approach was not completely
systematic and consequently it creates unnecessarily dependencies that restrict instruction scheduling. This paper
proposes a new register allocation technique based on a systematic generation of register-reuse chains. The first phase
of the proposed technique is to generate register-reuse chains that are optimal in the sense that no additional
dependencies are created. Thus, register allocation can be done without restricting instruction scheduling. For the case
when the optimal register-reuse chains require more than available registers, the second phase reduces the number of
required registers by merging the register-reuse chains. Chain merging always generates additional dependencies and
consequently enforces the execution order of instructions. A heuristic is developed for the second phase in order to
reduce additional dependencies created by merging chains. For matrix multiplication program, the number of registers
resulting from the first phase is small enough to fit into available registers for most basic blocks. In addition, it is

shown that the restriction to instruction scheduling is reduced by the proposed merging heuristic of the second phase.

Key Words : Optimizing compiler, register allocation, register-reuse chains, dependence analysis

an efficient instruction scheduling can degrade the overall
optimization if the scheduler leads to too many constraints

1. Introduction

to register allocation resulting in poor register allocation.

As the complexity of a processor architecture and
organization increases, the impact of compiler optimization
on the processor speed becomes more important. Therefore,
compiler optimization techniques, especially instruction
scheduling and register allocation, have been extensively
investigated [1-10]. Instruction scheduling determines the
execution order of instructions while register allocation
determines which value is to be stored into a processor
register and which value is not. If a processor has
multiple registers, register allocation also chooses the exact
register number.

In most research efforts, instruction scheduling and
register allocation are studied separately. However, these
two optimizations often make a significant influence on
each other. For example, an instruction scheduling decides
the live range of a variable and consequently gives

significant constraints to register allocation. Therefore, even

* £ & B : Intel Senior Engineer - TH§
ETHF - 1999%€ 108 19H
&ESET L 19994 118 118

On the other hand, register allocation affects instruction
scheduling because it often creates additional dependencies
which add constraints to the scheduler. In order to achieve
the best optimization, a compiler needs to adopt a
technique which is efficient for both instruction scheduling
and register allocation.

In order to develop an optimizing compiler efficient for
both a scheduler and a register allocator, recent research
has been focused on the integration of these two
techniques [7-10]. Berson, and Soffa make a
promising contribution by proposing register allocation

Gupta,

based on register-reuse chains [7,8]. Register-reuse chain
is defined as an ordered set of instructions that use the
same destination registers. Thus, register allocation in [7,8]
is a procedure to decompose a dependence graph into
register-reuse chains. Each reuse chain maps to a register
so that the number of necessary registers is the same as
the number of register reuse chains. If the number of
chains is than the number of registers,
dependencies are added to the dependence graph which
leads to the reduction of the number of register-reuse
chains (see details in Section 2). Since the addition of

greater

dependencies generates additional restrictions to an
instruction scheduler, efficient heuristics is proposed in
[78] to reduce unnecessary restrictions.

Although the main idea of the register-reuse chain
approach is promising, the method proposed by [7,8] can
still be improved. This is because it does not have a
systematic approach to derive the best register-reuse
chains and consequently it can result in an inappropriate
selection of register-reuse chains. Another improvement
is possible because the efficiency of the previous
heuristic can be degraded when statements have various
method is optimized
assuming that every statement in a program has the
same eXxecution time. However, it is often the case that
different statements can have different execution times
because different statements can have different types of

execution times. The previous

operations as well as different number of operations. The
proposed register allocation is optimized for general cases
that have no restriction on the execution time of a
statement.

The register allocation technique proposed in this paper
follows the framework in [7,8], and improves the efficiency
of the technique. The first step is to find register
allocation that is optimal in the sense that no additional
dependencies are created. This optimal register allocation
sometimes requires a large number of registers that is
greater than the number of available registers. For this
case, a heuristic is proposed to reduce the number of
necessary registers while attempting to minimize additional
dependencies. The proposed register allocation technique is
implemented in Local C Compiler (LCC) [3] and the
efficiency of the technique is evaluated.

This paper is organized as follows. Section 2 provides
a brief explanation of the previous approach for register
allocation based on register-reuse chains followed by
discussion on possible improvements. Section 3 studies
the creation of dependencies due to register allocation,
and proposes a register allocation algorithm that avoids
the creation of any additional dependencies. Section 4
proposes a heuristic that reduces the number of required
registers while attempting to minimize additional
dependencies. Section 5 briefly describes the implementation
of the proposed register allocation technique, and
evaluates the efficiency of the technique. Section 6
concludes the paper.

2. Register Allocation Based on Register-Reuse Chains

This section explains the previous register allocation
approach based on register-reuse chains. The main idea is
briefly explained with an example, and then possible
improvements over the previous approach are discussed.

HX2E8 WS Alwol HANY 44

Trans. KIEE. Voi. 48A, No. 12, DEC. 1999

2.1 Previous Approach

In [7], the source code shown in Fig. 2.1 (a) is used to
explain the register allocation based on register-reuse
chains. Fig. 2.1 (b) shows the corresponding dependence
graph in which each node corresponds to a statement in
the source code. The character in the node represents the
name of the variable assigned in the statement, Fig. 2.1
(c) shows the register reuse graph derived from the
dependence graph. In this graph, nodes are the same as
those in the dependence graph and an edge shows the
possibility of the register reuse, that is, the successor
(destination of the edge) can reuse the register of the
predecessor (source of the edge). Let e(ab) denote the
edge from node 'a’ to ‘b’. This edge represents that ‘b’
can kill ‘a’, ie, 'b’ can reuse the register assigned to ’a’.
Similarly, e(c,f) represents that ‘f’ can reuse the register
for ‘c’. Note that 'f’ has another incoming edge from ‘d’.
This means that 'f’ can reuse both the registers for ’'d’
and 'c’. However, ‘f' can reuse only one register. Thus, it
is necessary to decide which register 'f’ reuses. Removing
one of the edges coming into 'f’
decision. For example, if ‘c’ is chosen to be reused by f,
then removing edge e(df) can represent this decision.

In general, in order to use the register reuse graph for
register allocation, a register-reuse graph needs to be
transformed into another graph in which each node has at
most one predecessor and one successor. Fig. 21 (d)
shows such a graph transformed from Fig. 2.1 (c). By
removing edges (df), (eg), (,k) and (kl), this graph
forms a set of chains in which all nodes have one
predecessor and one successor at most. This graph can be
used for register allocation in such a way that each chain
is mapped to a register. Thus, all statements in a chain
are assigned to the same register. In this Fig, ‘a’, 'b’,
and '’ are assigned to the same register, while ‘c’, 'f’,
‘g’, 'h’, 'i’, and 'k’ are assigned to the same register.
These chains in this graph are called register-reuse chains
in [7,8]

Since each chain is mapped to one register, the number
of chains corresponds to the number of necessary registers.
For example, the graph in Fig. 21 (d) requires four
registers. If the number of chains is greater than the
number of registers, it is necessary to reduce the number
of chains. In order to reduce the number of chains, [8]
proposes to add dependencies in the dependence graph. For
example, consider a dependence graph as shown in Fig. 22
(a). Five register-reuse chains are derived in [8]. Suppose
that there are only four available registers. Then, [8]
suggests to add dependencies from ‘i’ to ‘g’ and ‘i’ to ‘h’
as shown in Fig. 22 (b). With the new dependencies, {8]
can derive new reuse chains of which number is four. More
details on the addition of dependencies are explained in [8].

can represent this

1565

BESWNEE 4BA% 12 1999F 128

There are many different ways to add dependencies. So,
optimization 1S necessary to select which additional
dependencies need to be added. In [8], the criterion for the
addition of new dependencies is the length of the critical
path iIn the dependence graph. For example, the added
dependencies in Fig. 2.2 (b) increase the length of the
critical path by one. In [8], a method is developed to add
dependencies that attempt to minimize the increase of the
critical path length. In addition, further optimizations are
develo;;éa 7
scheduling with the register allocation, for the generation
of register spill/reload instructions, and optimization across
basic blocks. Since the additional optimizations are not the
interest of this paper, detailed explanation is omitted.

Load a; °
b=2*a; / \
c=a+1; C? oe
d=a- 3;

e=2c*d; ° °
f=c-d;

g=e/f 0
h=g+35;

i=h®2; (»)
j=h+4

k=173 Q @
T=b+k;

. Lo

(a) Source code

(b) Dependence graph

{c) register-reuse graph (d) register-reuse chains

Fig. 2.1 Register allocation example given in [8]

in [8] for the integrafion of instruction

(b) Additional dependencies
shown in dotted line

(a) Dependence graph

Fig. 2.2. Creation of dependencies for register allocation
2.2 Possible Improvements

In this paper, improvements are attempted based on the
following observations.

In the generation of the register-reuse graph, the
selection of a possible killing node can affect the efficiency
of a scheduler. Recall that a killing node means the node
that can reuse the register assigned to the predecessor.
The previous research does not have a systematic
approach to select a killing node, and consequently can
degrade the efficiency of a compiler. For example, consider
the dependence graph shown in Fig. 2.3.

Suppose that 'b’ is selected to reuse the register for 'a’.
This enforces that ‘c’ and ‘d’ must be computed no later
than 'b’. Otherwise, ’'a’ is not available for the
computation of ‘c’ and 'd’ because ‘a’ is already replaced
by 'b’. Assume that there are only two functional units.
Since ‘c’ and ‘d’ cannot be executed later than 'b’, a
scheduler must enforce ‘c’ and ‘d’ to be executed

immediately after the execution of ‘a’. Then, node 'b’, ’e’,

Fig. 2.3 Example of dependence graph

and ‘f’ must be executed sequentially due to dependencies
between them. This requires 5 steps to complete the
computation. Suppose that ‘¢’ is selected to reuse the
Then, ‘b’ and 'd’ needs to be scheduled
right after ‘a’. In the next step, ‘¢’ and 'e’ can be
scheduled simultaneously. Finally, 'f" is scheduled. This
requires four steps to complete the computation. This

example shows the importance of the selection of the

register of 'a’.

initial reuse graph.

In [8], dependencies are added for reducing the number
of register-reuse chains. In this phase, it is often the case
that there exist more than one choices in the selection of
dependencies. [8] uses the criterion based on the increase
of the length of the critical path in the dependence graph.
This criterion is useful when each statement requires the
same execution time. However, each statement computes
different operations and therefore can have different
execution times. In addition, each statement can have
different number of operations that can further differentiate
the execution time of a statement. This paper proposes a
new criterion for the reduction of register-reuse chains.
Based on the new criterion, a heuristic is proposed to
reduce register-reuse chains. The new heuristic is
designed to be used efficiently for the general case when
different statements can have different execution times.

3. Register-Reuse Chain and Dependence Analysis
3.1 Longest Possible Live Range Analysis

Given a dependence graph, it is impossible to derive a
precise range of a variable before instruction
scheduling. This is because definitions and/or uses of
variables are not ordered before scheduling. However, it is
possible to derive the longest possible live range, that is,
the range out of which the variable is guaranteed to be
dead no matter what order is employed later by an
instruction scheduler. This section investigates how to
derive the longest possible live range of a given variable,
and then proposes an algorithm for the generation of
register-reuse chains based on the longest possible live
range analysis.

Note that the live range of a given variable spans to
the node that is the last use of the variable. Thus, the
problem of finding the live range of a given variable is
equivalent to the problem of finding the last use of the
variable. Let 'a’ be the name of a given variable. If only
a single node reuses variable ‘a’, then this node is the

live

end of the live range. If multiple nodes reuse variable 'a’,
it is necessary to find the node that is executed last.
Since this analysis is performed before instruction
scheduling, it is not clear which node is executed last.
The only exception is the case when dependencies enforce

HX|2E WP Aleel AN Y

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

strict execution order of these nodes. In this case, the
node of the last use is the end of the live range. In other
cases, it is necessary to derive a node that is dependent
on all the nodes that reuse variable ‘a’. At this node, a
variable is guaranteed to be dead because all the nodes
that use the variable is already executed before this node.
Thus, this node is called an ultimately killing node of
variable ‘a’. H there exists more than one ultimately
killing nodes, the one that is a predecessor of all others is
called the earliest ultimately killing node (EUK) of a. The
EUK of a given variable is the first node that guarantees
the end of its live range.

Example 3.1: Consider the example shown in Fig. 3-1.
Fig. 3-1 (a) shows a segment of C code. The
corresponding data dependence graph is shown in Fig. 3-1
(b). In this graph, variable ‘a’ has a single dependent
node 'b’. Thus, the live range of 'a’ ends at node 'b’.

Node ‘b’ has three dependent nodes, ‘c’, 'd’, and ’‘e’.
Node ‘f’ depends on all three nodes. Thus, 'f' is an
ultimately killing node of ‘b’. Similarly, ‘g’ is also
dependent on ‘c’, 'd’, and ’‘e’. Thus, 'g’ is also an

ultimately killing node of ‘b’. Since ‘f' is a predecessor of
'g’, node 'f' is the EUK of 'b’, that is, 'f’ is the first
node that guarantees the end of the live range of ‘b’. In
fact, ‘b’ is dead earlier than 'f’ because 'b’ is dead when
‘c’, 'd’, and ‘e’ are executed. However, it is not decided
which one is executed last at this stage (note that
instruction schedule is not fixed yet). Thus, no node
among ‘c’, 'd’, and ‘e’ guarantees the death of 'b’. Only
'f' guarantees that ‘b’ is dead because 'c’, 'd’, and 'e’
are already executed when 'f’ is executed.

Based on the longest possible live range analysis,
register allocation can be performed. Note that two
variables can share the same register as long as their live
ranges do not overlap. For a given variable, its EUK node
guarantees the end of its longest possible live range.
Thus, the register assigned to a variable can be reused by
the EUK node of the variable. The basic idea of the
register allocation algorithm proposed in this section is to
search the EUK node and assign the same register.

Fig. 3-2 shows the register allocation algorithm based
on the longest possible live range. The input of this
function is a dependence graph and the output is a set of
register-reuse chains. Each chain contains the nodes that
can be assigned to the same register. This algorithm
consists of two major functions, regAllocLongestRange()
and searchEUK(). Function regAllocLongestRange() visits
each node in BFS order. If the visited node does not
belong to any register-reuse chain, a new chain is created
and the node becomes the head of the new chain. Then,
find its EUK node by calling searchEUK(). Function
searchEUK() takes a node as an input argument and finds

1567

VAP W E 48A% 12 1999%F 2R

(1) a=1

(] b=za+ 1
@ c=2+b
@ d = v/
(5) e =b-1
(G f = Tcrdde;
@ g =2

(a) Example C code

(b) Data dependence graph

(1) R3 =1 (R3=1)
(2 R3=R3 + 1 (R3=2)
(3 R3=2+R3 (R3=4)
{4) R4 = R32 (R4=2)
(5) RS = R3-1 (R5=3)
(6) R3=R3+R4+R5 (R3=9)
{7) R3 = R3-2 (R3=7)

(c) Incorrect instruction order

() R3 =1 (R3=1)
(2 R3=R3 + 1 (R3=2)
@) R4 = R32 {(Ra=1)
(5) RS = R3-1 (R5=1)
(3) R3 = R3«2 (R3=4)
(6) R3=R3+R4+R5 (R3=6)
(7) R3 = R3-2 (R3=4)

(d} Correct instruction order

Fig. 3.1 Dependencies generated by register aliocation

the EUK node of the input node. Then, attach the EUK
node to the same chain as the input node. If the EUK
node is already attached to a register-reuse chain, find
any dependent node of the EUK node that is not attached
to any chain. Then, attach it to the same chain as the
input. Once a node is attached, then searchEUK() is
recursively called by passing the EUK node as the input
argument. Recursive call ends when a node does not have
a dependent node.

RegAllocLongestRange (DAG)
{
Node p = visit DAG in Breadth First Search (BFS) order
if (p not visited) {
createNewChain (p);
searchEUK (p)
}
}

searchEUK (Node p)
{
if (Node g = findEUK (p}) {
S «m (}ﬂ%\/‘lsned). {77;, e = e = S S -
attachNodeToChain (q)
searchEUK (q):

} else if (g = firstUnvisitedDescedentNode(q)) {

attachNodeToChain {(q);
searchEUK (q);

}

}
Fig. 3.2 Register-reuse chain generation algorithm,

Example 3.2: Consider the data dependence graph shown in
Fig. 21 (b). Function regAllocLongestRange() starts with
root node ‘a’ and creates a new chain that includes only
node ‘a’. Then, function searchEUK() is called to search the
EUK node of ‘a’. Note that 'a’ has three edges incident
into nodes, ‘b’, ‘c’, and 'd’, respectively. These three paths
merge at node ‘l’, that is, ‘I’ is the EUK of ‘a’. So, node
‘" is assigned to the same register-reuse chain as ‘a’.
Then, searchEUK() is called again to search the EUK node
of 'l’. However, node 'l’ does not have any dependent node,
and therefore the recursive search of EUK node stops.
Function regAllocLongestRange() visits the next node in
BFS order. Therefore, node ‘b’ is visited next. Function
regAllocLongestRange() creates the second chain to contain
‘b’ and then calls searchEUK(). Node ‘I’ is found as its
EUK because the node '’ is the only dependent node of 'b’.
However, node ‘I’ is already assigned to the first
register-reuse chain, so it cannot be assigned to the same
chain as ‘b’. Since node ‘I’ does not have any dependent
node, recursive call to serachEUK() stops. Thus ‘b’ is the
only node that is assigned to the second register-reuse
chain. Now another new search for the third register-reuse
chain is initiated starting with node ‘c’. The EUK searching
finds ‘g’ as its EUK node and it is not visited. Thus, ‘g’ is
assigned to the third register-reuse chain. Then, by
recursively calling searchEUK(), 'h’ and 'k’ are found and
assigned to the third register-reuse chain. Finally, node '’
is found as the EUK of 'k’, but it is already assigned to
the first register-reuse chain. So, searching the EUK stops.
By visiting all the nodes that are not assigned and
recursively searching its EUK nodes, register-reuse chains
are derived as shown in Fig. 3-3. This result shows that
six registers are necessary to prevent any restrictions on
instruction scheduling.

Chain [0] = {a, I}
Chain [1] = {b}

Chain [2] = {c, g, h, k}
Chain [3] = {d, i}
Chain (4] = {e,]}

Chain [5] = {f}

Fig. 3.3 Register-reuse chains generated by EUK search
3.2 Dependencies Created by Register Reuse

In the previous subsection, register-reuse chains are
generated based on the longest-possible live range
analysis, that is, two variables are attached to the same
chain only if their longest possible live ranges do not
overlap. However, overlapped longest possible live ranges
do not always prevent the two variables from sharing the
same register. Instead, the overlapping means that there
exist some instruction schedules that prevent the two
variables from sharing the same register, while the other
instruction schedules can allow them to share the same
Therefore, even though two variables overlap
they can still be
assigned to the same register as long as an instruction
scheduler avoids the schedules that prevent the register
share. This section analyzes what schedules must be
avoided for a given register allocation and how to lead an
instruction scheduler to avoid such schedules.

Consider the case when variable ‘b’ reuses the register

register.
their longest possible live ranges,

[

assigned to variable ‘a’ while the two variables have
overlapped longest possible live ranges. This enforces
instruction scheduling to schedule nodes in such a way
that the live range of variable 'a’ must end at the
instruction that assigns variable 'b’. In other words, all
the nodes that use variable ‘a’ must be scheduled earlier
than ‘'b’. If this is not true, the generated assembly
instruction is wrong. Suppose that variable ‘c’ also uses
variable 'a’ while ‘c’ is scheduled later than 'b’. Then, at
the time ‘¢’ attempts to use 'a’, it is no longer available
because the register for ‘a’ is already occupied by 'b’.

Example 3.3 Consider Fig. 3.1 again. Assume that
variables ‘a’, 'b’, ‘c’, 'f', and ‘g’ are assigned to the
same register, R3 while ‘d’ and ‘e’ are assigned to R4,
and R5, respectively. Note that ‘b’ and ‘¢’
the same register although their live ranges overlap. Fig.
3.1 shows two different instruction schedules whose
resulting assembly codes are given in Fig. 3-1 (c) and
Fig. 3-1 (d), respectively. These two figures are different
in the execution orders of nodes ‘c’, 'd’ and ‘e’. In Fig.
3-1 (c), node 'c’ is scheduled before 'd’ and ‘e’ while, in
Fig. 3-1 (d), node ‘¢’ is scheduled after ‘d’ and ‘e’. The
rightmost columns of these two figures show the results

are assigned to

XA MEE Aleel AAY 44

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

of corresponding instructions. Note that the final value of
R3 is wrong in Fig. 3-1 (c). This is because instructions
(4) and (5) use a wrong value of ‘b’. At instruction (4),
R3 does not store the value of 'a’ because it is already
replaced by ‘b’ at instruction (3). On the other hand, R3
stores the right value of ‘a’ until instruction (4) in Fig.
3-1 (d).

The above example shows that a certain schedule
results in an invalid assembly code if variables are
assigned to the same register although their longest live
ranges overlap. Therefore, if a register allocator decides to
assign the same register to variables whose longest
possible live ranges overlap, it needs to pass information
to an instruction scheduler so that the scheduler can avoid
an invalid order. Such information can be stored as a
dependence. For example, consider again the case when
variable ‘b’ reuses the register assigned to variable 'a’
while the two variables have overlapped longest possible
live ranges. Then, any instruction depending on ‘a’ (ie,
using ‘a’) must be scheduled earlier than 'b’. If
dependencies are created from the dependent nodes of ‘a’
to 'b’, these dependencies can lead an

scheduler to schedule the dependent nodes earlier than 'b’.

instruction

Example 3.3 (continued): In order to avoid the invalid
instruction order as shown in Fig. 3-1 (d), it is necessary
to create additional dependencies. Since variable ‘c’ reuses
the register assigned to 'b’, it is necessary to generate
dependencies from all the nodes that depend on ‘b’ to ‘c’.
Thus, two dependencies are generated from ‘d’ to ‘¢’ and
‘e’ to ‘c’, respectively. These new dependencies are shown
as dashed arrows in the dependence graph (see Fig. 3-1
(b)). The additional dependencies enforce node ‘b’ to be
scheduled after 'c’ and 'd’.

The dependence created by register reuse is different
from a normal dependence in the sense that it requires the
dependent node to be executed no earlier than the node,
but does not require the dependent node to be executed
strictly later. If there are multiple functional units, a node
can be executed simultaneously with its dependent node.
Consider the dependence graph shown in Fig. 3.1 again.
Suppose that three functional units are available. Then, 'c’,
‘d’, and ‘e’ can be executed simultanecusly. When ’c’
reuses the register assigned to 'b’, variables 'd’ and ‘e’
already accessed the value of ‘a’. Therefore, the
computation for 'd" and ‘e’ is correct. However, if there is
only one functional unit, the dependence behaves exactly
the same as a normal dependence. Therefore, the
instruction (3) has to be moved behind instruction and (4)
and (5) as shown in Fig. 3.1 (d).

It is not always possible to find a valid schedule (e,
the schedule that generates correct code) for a given
register allocation if two variables share the same register

RWESWINEE 48A% 1218 1909% 128

even though their longest possible live ranges overlap.
This case can be detected and prevented at register
allocation stage. The detection is possible by observing
dependence conflict between existing dependencies and the
new dependence created by register sharing by two
variables whose longest possible live ranges overlap. If the
new dependence violates an existing dependence, then the
register sharing is impossible, ie, there is no valid
schedule that allows the register sharing.

4. Merge of Register—Reuse Chains

The number of independent register-reuse chains derived
in the previous section can often exceed the number of
available registers. For this case, it is necessary to
develop an algorithm to reduce the number of register—
reuse chains. Recall that the reduction of the number of
chains creates new dependences resulting in additional
instruction scheduler. This

develops an algorithm that aims to reduce the number of

constraints to an section

chains while minimizing additional constraints to an
instruction scheduler.

4.1 Criterion of Chain Merging

One way of reducing the number of chains is to merge
chains. When selecting the chains to be merged, many
different combinations of chains are possible. The selection
of chains affects an instruction scheduler because different
merging chains result in different additional dependencies.
If a preferred scheduling criterion is available at the
register allocation phase, the best possible chains can be
chosen based on the criterion. However, it is often the
case that a desirable scheduling scheme is not available.
For this case, this section proposes a generic criterion that
can be applicable to any scheduler.

Definition 4.1 Given a dependence graph, the number of
schedules is the number of possible orderings of the

nodes.

Consider the dependence graph shown in Fig. 41 (a).
Dependencies between nodes enforce only partial order of
nodes, but not the total order. So, many different orderings
of nodes are possible. For example, the following orders all
comply with the dependencies.

a'-=>b ~~>¢ -=>d -->e'-->f -->'g -~ >h'-->k’
al__>cl____>bl__>dl__>el__>fl__>gl__>hl__>kl
a'=—>d'-->c'-->b'-->e'-->f'-->g'-->h'-->k’

However, the following order is not possible because it
violates the dependence from a’ to b’.

1570

b'-->a’-->¢ - >d -~ >e - >f - ->g'-->h' >k’

In this dependence graph, there are 30 different possible

orderings of the nodes.

Among the possible schedules {or orders of nodes), an
instruction scheduler selects the order that best suits the
target architecture. The addition of dependencies by
register allocation reduces the number of schedules, and
consequently reduces the choices that can be made by the

instruction scheduler, The more schedules a dependence

graph has, the more choices the instruction scheduler has.
So, it is desirable to avoid the reduction of the number of
schedules due to register allocation. Thus, the number of
schedules is proposed to be used as the criterion to decide
the efficiency of a register allocator.

The algorithm shown in Fig. 4.1 computes the number
of schedules for a given dependence graph.

int Num_Schedules (DAG)

{
if (DAG is totally ordered) Return 1:
Remaining_DAG = Remove_Fixed_Nodes (DAG);
if (Remaining_DAG can be divided into two disjoint

subgraphs)

{

/+ Divide the Remaining_DAG into LEFT and RIGHT

S = C(LEFT+|RIGHTLILEFTN ~ Num_Schedules(LEFT)
* Num_Schedules(RIGHT);
}
else {
S=0

for { i = 0: i < num_starting_nodes; i ++) {
Temp_DAG = Rm_Start_Node(Remaining_DAG, i);
S += Num_Schedules (Temp_DAG)
}
}
Return S;
}

Fig. 4.1 Algorithm for computing the number of schedules

P

© 09"

(a) Data dependence graph. (b) Remaining dependence graph
after removing nodes with
fixed schedule

{c) Selection and removai of the first-scheduled node for
RIGHT: ‘c’ scheduled first vs. ‘d’ scheduled first.

O © 8@

(d) The remaining graphs for the two cases in (c)
Fig. 4.2 Computation of the number of schedules

The algorithm is explained with the example shown in
Fig. 42 (a). Function Num_Schedules() checks if the input
graph is totally ordered. If it is true, it returns 1 because
only one schedule is possible for a totally ordered graph.
Next, Remove_Fixed_Nodes() removes the nodes whose
order is fixed. Note that the removal of nodes with a
fixed schedule does not change the number of schedules.
For the example, the orders of ‘a’ and 'k’ in Fig. 42 (a)
are fixed because node ‘a’ must be executed before all
other nodes and node 'k’ must be executed after all other
nodes. Therefore, function Remove_Fixed_Nodes() removes
these two nodes from the graph. The remaining graph is
shown in Fig. 4.2 (b). Then, if-clause checks whether the
remaining graph can be divided into two disjoint (ie., no
edge between these two) subgraphs. If it is true, the body
of the if-statement is executed. Let the two subgraphs
denoted by LEFT and RIGHT. In the example, LEFT={b}
and RIGHT={c, d, e, f, h}). Then, the total number of
schedules can be formulated as:

S (GRAPH) = C(ILEFT\+\RIGHT\, |LEFT}) »
S(LEFT) * S(RIGHT) 4.1

where S() denotes the number of possible schedules for a
given graph, |LEFT! is the number of nodes in subgraph
LEFT, |RIGHT! is the number of nodes in subgraph
RIGHT, and C(|LEFT|+|RIGHT|, |LEFT!\) is the
number of possibilities in choosing |LEFT\ elements out
of ILEFT|+|RIGHT! elements.

The term (|LEFTI+|RIGHT!|, |LEFTI|) can be
interpreted as the number of schedules for a graph
without considering how the nodes in subgraphs LEFT
and RIGHT are scheduled individually. In other words, the
term represents the number of ways the nodes in LEFT
occupies the entire available time slots of |LEFT} +
|RIGHT!. For example in Fig. 4.2 (b), there are six nodes

XA MU Atael HAY 4

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

in the remaining graph, one node in the LEFT subgraph
and five nodes in the RIGHT graph. Ordering of these
nodes can be considered as allocating these nodes in six
time slots. When scheduling these six nodes, node 'b’ can
be allocated to any time slot from 1 to 6 while five nodes
in RIGHT occupy five remaining time slots. As a result,
there are six ways the nodes in LEFT occupy six
available time slots. This can be obtained by

CUbYl + He, d, e f, W, HBl) = C6, 1) = 6

Now, it is necessary to compute S(LEFT) and
S(RIGHT) which are the numbers of schedules of LEFT
and RIGHT subgraphs, respectively. Thus, the problem of
finding the number of schedules is decomposed into a
smaller problem with two subgraphs. S(LEFT) and
S(RIGHT) can be computed by recursively calling
Num_Schedules() function. -

Consider S(LEFT), i.e., the number of schedules of the
left graph. Since there is only one element, only one
schedule is possible (e, totally ordered). Thus,
Num_Schedules() returns 1. Consider the subgraph RIGHT
= {c, d, e, f, h}). Node 'h’ should be always scheduled last
so that Remove_Nodes can remove this node. The
resulting graph is shown in Fig. 4.2 (c). There are two
starting nodes and therefore their schedules are not fixed.
Thus, these starting nodes cannot be removed, and the
remaining graph cannot be decomposed into two disjoint
subgraphs. So, the test of if-statement fails and the body
of else-statement is to be executed. In this case, a
straightforward decomposition is impossible. In order to
decompose the problem, it is necessary to arbitrarily fix
the schedule of some node. Consider the node that can be
scheduled as the first node. Note that only a starting node
can be scheduled as the first node. Then, a subproblem is
defined to calculate the number of schedules for each case
that one of the starting nodes is scheduled first. In each
subproblem, the chosen starting node can be removed
because its schedule is fixed. Then, Num_Schedules(
function is called again. Once every subproblem is solved,
the total number of the schedules is simply the summation
of the number of the schedules for all subproblems.

For this example, there are two starting nodes 'c’ and
'd’. So, one of these two nodes can be chosen as the first
node. Suppose that starting node ‘¢’ is scheduled first as
shown in Fig. 42 (c). Then, this node can be removed
from the graph. In addition, node ‘d’ can also be removed
because its schedule is fixed as the second node. The
resulting graph is shown in Fig. 42 (d). Now, the graph
can be decomposed into two disjoint subgraphs and
therefore, the number of schedules can be computed from
Equation (4.1). The other subproblem addresses the case
when starting node 'd’ is chosen to be the first node (see

1571

BEPWR IS 48A% 124 1999%F 12R

Fig. 42 (c)). Then, this node can be removed from the
graph and the resulting graph can be decomposed into two
disjoint subgraphs (see Fig. 42 (d)). Again, the number of
schedules can be computed from Equation (4.1). The total
nuraber of schedules is the summation of the numbers of
the schedules for the two cases:

S(RIGHT) = SUc, d, e, f, A)
= SUc, d, e, A c is scheduled first)

+ G q e

1S scheduled fir

=SHe, 1Y + SUc, e, M = 5

Thus, the total number of schedules is

S(GRAPH) = C(|LEFT|+\RIGHT|, |LEFTI|) *» S(LEFT)
* S(RIGHT) = (6, 1)*1*5 = 30

In summary, the algorithm of computing the number of
schedules follows divide and conquer strategy. In the
divide phase, all the nodes with fixed schedules are
removed. If the removal leads to disjoint subgraphs, the
conquer phase computes the number of schedules for each
of the subgraphs. If the graph cannot be divided into
disjoint subgraphs, decomposed into
multiple subproblems, each of, which considers the case
when one of the starting nodes is scheduled first. Then,
the conquer phase solves the subproblems.

the problem is

4.2 Heuristics for Chain Merge

Merging multiple chains into a single chain can reduce
the number of register-reuse chains. In the merge of
chains, optimization is necessary because there are
combinatorially many possibilities for selecting the chains
to be merged. Thus, this subsection proposes a heuristic
that reduces the search space for selecting the chains to
be merged.

In order to reduce complexity, the proposed heuristic
merges only a pair of chains at a time. In addition, further
reduction is made by additional constraints in the selection
of the chains to be merged. In the proposed heuristic, two
chains can be merged only if the first node of one chain
is adjacent to a node in the other chain, that is, there is
an edge incident to the first node of one chain from a
node in the other chain. For example, in Fig. 3.3, chain[0]
and chain[l] can be merged because the first node of
chain[1] is 'D’ that is adjacent to ’a’ in chain[0]. Similarly,
chain[2] can be merged with chain[0]. However, chain[4]
cannot be merged with chainf0] because the first node, ‘e’,
is not adjacent to any nodes in chain[0].

Fig. 4.3 describes the algorithm for merging register-
reuse chains. Visiting nodes in the dependence graph in

1572

BFS order can effectively perform the search for the
candidate pairs. When a node check if its
dependent node is the first of a separate chain. If it is

is visited,

true, merge the two chains that include the two nodes. If
there are more than one such node, select the one that
results in the greatest number of schedules.

Merge_Chains(chains, DAG)
{

__ while ((number_of chains > number_of registers)

or (all the nodes in DAG are visited)) {
node = visit_in_BFS(DAG);
number_of_chains = merge (chains, node);
}
}
int merge (chains, node)
{
if (node has multiple dependent nodes) {
chosen_node = select_best_choice { node);
if (chosen_node exists)
merge_two_chains(p,chosen_node,
merged_chains);

}

Fig. 4.3 Regster-reuse chain merging algorithm

The complexity of the above heuristic is combinatiroal in
the worst case. However, it is computationally affordable
because a single basic block generally does not have many
statements.

5. Evaluation

Matrix multiplication program is used as the test
program. Table 5.1 summarizes the result of register
allocation. The program consists of twelve basic blocks of
which number is given in the first column of the table.
The second column shows the number of independent
register-reuse chains generated by the optimal algorithm
in Section 3. Except two basic blocks, the number of
chains is less than or equal to eight that is, in general,
less than the number of registers in RISC processors
including a relatively small embedded processor. Recall
that the optimal register-reuse chains do not create any
additional restriction to an instruction scheduler. Thus, for
most of basic blocks, the proposed register allocation does
not restrict instruction scheduling at all. The third column
represents the number of register-reuse chains resulting
from chain merging. Note that the number of register-
reuse chains is reduced in basic blocks 3 and 5. The
fourth and fifth column show the number of schedules
before merging and after merging, respectively. In basic
block 3 and 5, it is shown that the number of schedules is
reduced by chain merging. The last column also represents
the number of schedules after merging. In this merging,
an arbitrary chain is selected for merging instead of the

selection scheme used in the proposed heuristic. Both basic
blocks 3 and 5, the arbitrary selection results in less
number of schedules.

Table 5.1 Evaluation Results

Basic | Number of | Number Number of | Number of | Number of
Biock | independe | of reuse | schedules [scheduler | schedules
nt reuse chains before after after
chains after _ merging merging arbitrgry
merging merging
| 4 4 24 24 24
2 5 5 120 120 120
3 8 7 6048 4032 2016
4 6 6 720 720 720
5 12 10 2217600 739200 369600
6 9 9 2661120 2661120 2661120
7 6 6 720 720 720
8 7 7 2520 2520 2520
9 5 5 120 120 120
10 6 6 360 360 360
1" 4 4 24 24 24
12 5 5 60 60 60

Chain [0} = {a, ¢, f, i, kI
Chain [1] = {b, e}

Chain 2] = {d, g, j}
Chain [3] = {h}

(a) Register reuse chains

(b} Additional dependencies created by chain merging

Fig. 5.1 Register allocation and generated dependencies
enforcing parallel execution of instructions

Consider again the example dependence graph shown in
Fig. 2.2. Recall that the previous approach added two
additional dependencies (as shown in Fig. 2.2 (b)) in order
to reduce the number chains to four. However, Fig. 5.1 (a)
shows the register-reuse chains generated by the proposed
heuristic,c and Fig. 52 (b) shows the corresponding
dependence graph with the additional dependencies shown

HXI2E YEE Algel AN 44

Trans. KIEE. Vol. 48A, No. 12, DEC. 1999

with dotted line. Note that Fig. 5.1 (b) is better than the
previous approach in the sense that it does not increase
the length of the critical path at all. However, the two
dependencies from ‘e’ to ‘f' and from ‘f’ to ‘e’ enforce
these two instructions to be executed simultaneously. This
1s an example that shows register allocation enforces
simultaneous execution of instructions.

6. Conclusions

In many basic blocks, register-reuse chains generated by
the optimal algorithm fit in available registers. Therefore,
with the optimal algorithm, register allocation does not
create any restriction to instruction scheduling. When
chains are merged, additional dependencies cannot be
avoided. The proposed merging heuristic reduces additional
restriction to instruction scheduling. The number of
schedules is used as the criterion to compare register
allocators. In the future, they need to be compared by
measuring the efficiency of an instruction scheduler for
benchmarks. In addition, the merging heuristic can be
improved by merging chains that do not have adjacent
nodes.

paegs

[1] Alfred V. Aho and Jeffrey D. Ullman, Principles of
Compiler Design, Addison-Wesley, 1977.

[2] Steven S. Muchnick. Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, Inc,
1997.

[3] Christopher Fraser and David Hanson, A Retargetable
C Compiler: Design and Implementation, Benjamin/
Cummings Publishing Co., 1995,

[4] Steve Beaty. Instruction scheduling using genetic
algorithms. Ph.D. Thesis. Colorado State University,
1991.

[5] Jinpyo Park, and Soo-Mook Moon, Optimal Register
Coalescing. In Proc. Int. Conf Parallel Architecture
and Compilation Techniques, Oct. 1998.

[6] Stan Y. Liao. Code generation and optimization for
embedded digital signal processors, Ph.D. Thesis,
MIT Department of EECS, January 22, 1996.

[7] David A. Berson, Rajiv Gupta, and Mary Lou Soffa.
Resource Spackling: A framework for integrating
register allocation in local and global schedulers. In
Proc. of IFIP WG 103 Working Conference on
Farallel Architectures and Compilation Techniques,
pp 135-146, 19%4.

[8) David A. Berson, Rajiv Gupta, and Mary Lou Soffa.
URSA: A Unified ReSource Allocator for registers

1573

REPEME 40A% 1218 1999F 1258

(9]

{10]

{11]

1574

and functional units in VLIW architectures. In Proc
o IFIP WG 103 Working Conference on Architectures
and Compilation Techniques for Fine and Medium
Grain Parallelism, pp 243-254, 1993.

Cindy Norris and Lori L. Pollock. Register allocation
over the program dependence graph. In Proc. of the
SIGPLAN’'94 Conference on Programming Language
Design and Implementation, June 1994.

Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and

Salem Reyen. Combining Register Allocation and
Instruction Scheduling. Technical Report, Courant

Institute, TR 698, July 1996.

Yukong Zhang, Instruction Scheduling and Register
Allocation for Embedded Processor, PhD. thesis,

Louisiana Tech University, 1999.

of 8 XM (* & =)

1965 29 84 19879 Mgl AAFRH £, 19964
Purduett¥2—d47H2- A 34354 (3419969
-1998d Louisiana F 8 FHFeigat = a4 1998-8A
Intel Senior Engineer.

E-mail @ jasonl@ichips.intel.com

