Quantitative Analysis of Cobalt with Continuous Flow Preconcentration Using 1-Nitroso-2-naphthol as an Organic Precipitant

1-Nitroso-2-naphthol 침전제를 사용한 연속흐름 선농축법에 의한 코발트의 정량분석

  • Im, Kab Soo (Department of Chemistry Education, Korea National University of Education) ;
  • Pak, Yong Nam (Department of Chemistry Education, Korea National University of Education)
  • 임갑수 (한국교원대학교 화학교육과) ;
  • 박용남 (한국교원대학교 화학교육과)
  • Published : 19991200

Abstract

Trace amount of cobalt in water samples was preconcentrated continuously with an organic precipitant and determined by flame atomic absorption spectrometry. The flow injection technique was used to preconcentrate cobalt by on-line direct precipitation with 1-nitroso-2-naphthol. The precipitation was dissolved with methyl isobutyl ketone (MlBK) and was sent to the flame. The optimum conditions for cobalt determination were determined and used to analyze Co samples. For 1.0 mL of sample, the enrichment factor was 13 and the sample throughput was about lO per hour for 0.5 ppm Co solution. The enrichment factor was increased to 68 fold for 10.0 mL. A semi-reference biologicaI sample was prepared and analyzed. The result was in good agreement with the expected value with RSD of 4%.

본연구에서 유기 침전제를 사용하여 수용액중의 코발트를 on-line으로 연속 침전시켜 선농축하는 방법을 연구하였다. 침전제로 1-nitroso-2-naphthol을 사용하여 라인내에서 직접 침전시킨 뒤 MlBK(Methyl lsobutyl Ketone)로 용해시켜 불꽃 원자흡수 분광기로 보내어 분석하였다. 최적조건을 구하고 농축배율을 연구한 결과 대개 0.5 ppm의 코발트 시료 1.0 mL를 사용하였을 때 13배의 농축율을 얻었으며 시료 처리 속도는 시간당 I0개 정도 이었다. 부피를 10.0 mL로 증가시키면 시료의 처리속도는 늦어지지만 농축비를 68배로 높일 수 있었다. 본 연구의 정확성을 알기 위해 합성된 준 표준 생체시료를 분석한 결과 4%의 상대 표준편차를 가지고 예상치에 근접하는 좋은 결과를 얻을 수 있었다.

Keywords

References

  1. Lab. Rob. Autom. v.9 Yan, X;Mol, W. V.;Admas,F.
  2. J. Am. Chem. Soc. v.43 Van Klooster,H.S.
  3. J. Anal. Atom. Spectrom v.9 Zhuang,Z.;Wang, X;Yang, P.;Yang, C.;Huang, B.
  4. Anal. Chem. v.57 McLaren, J.W.;Mykytiuk, A.P.;Willie, S.N.;Berman, S.S.
  5. Anal. Chim. Acta. v.258 Seubert, A
  6. Pure and Appl. Chemistry v.54 no.8 Mizuike,A.;Hirada, M.
  7. Bull. Korean Chem. Soc. v.19 Kim, Y.S.;Jung, Y.J.;Choi, H.S.
  8. Anal. Chem. v.59 Sakamoto, C.M.;Johnson, A.S.;Johnson,K.S.
  9. J. Anal. Atom.Spectrom v.12 Goenaga,I.H.;Fernandez Sanchez,M.L.;SnazMedel,A.
  10. Applied Spectroscopy v.45 Welz,B.;Zu, S.;Sperling,M.
  11. Anal. Chim. Acta. v.294 Pei, S.;Fang, Z.
  12. Talanta v.43 Nielson, S.;Sloth, Jens J.;Hansen, E.H.
  13. Anal. Sci. v.13 Cho, Y.M.;Pak, Y.N.
  14. Bull. Korean Chem. Soc. v.19 Cho, Y.M.;Yeon, P.H.;Pak,Y.N.
  15. Anal. Chim. Acta. v.98 Hudnik, V.;Gomiscek, S.;Gorene, B.
  16. J. Applied Spectroscopy v.39 Zhuang, Z.;Wang, X.;Yang, P.;Yang, C.
  17. J. Am. Chem. Soc. v.62 Kolthoff, I.M.;Langer, A.
  18. J. Anal. Atom. Spectrom v.9 Mendes, P.C.S.;Santelli, R.E.;Gallego, M.;Valcarcel, M.
  19. Bunseki Kagaku v.26 Mizuike, A.;Hiraide,M.;Suzuki T.
  20. Ind. Eng. Chem.Anal. (Ed.) v.10 Sarver,L.A.
  21. Fresenius' J. Anal. Chem. v.315 Schramel, P.;Xu,L.;Knapp,G.;Michaelis, M.
  22. Fresenius' J. Anal. Chem. v.350 Hiraide, M.;Ohta, Y.;Kawaguchi, H.
  23. Analysis v.23 Yaman, M,S. Gucer
  24. Anal. Chem. v.49 Krishnamurity,K.V.;Reddy,M.M.
  25. Anal. Chem. v.61 Santelli, R.E.;Gallego, M.;Valcarcel, M.
  26. Bull. Korean Chem. Soc. v.19 Yeon,P.H.;Huh, G.;Pak, Y.N.