Synthesis of Dendritic Carbosilanes by the Use of Hyperbranched Polymers

Hyperbranched Polymer를 이용한 나뭇가지꼴 카보실란 거대분자의 합성

  • 김정균 (동아대학교 자연과학대학 화학과) ;
  • 강성경 (동아대학교 자연과학대학 화학과) ;
  • 박은미 (동아대학교 자연과학대학 화학과)
  • Published : 19990800

Abstract

Dendritic carbosilanes based on hyperbranched polycarbosilanes as core molecule have been prepared The core molecules were obtained by the use of hydrosilation of $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$type). The hyperbranched core $AB_2\;and\; AB_3$ type polymers were generated to higher molecular dendritic carbosilanes Gn+1 by the use of hydrosilation and alkenylation sequence. The Gn+2P generations were not obtained as unified molecules by the use of hydrosilation with $HSiMeCl_2$. Gn and Gn+1 type polymers were produced to polysilol by the reaction of 9-BBN and alkali medium oxidation of hydroborated compounds. The degree for reaction has been controlled by the NMR spectroscopy.

Hyperbranched polymer를 이용한 나뭇가지꼴 카보실란 거대분자를 합성하였다 Hyperbranched polymer의 영세대 화합물의 합성은 $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$형)의 수소화규소첨가반응 방법을 이용하여 합성하였다. Hyperbranched polymer $AB_2$$AB_3$형 고분자 화합물은 수소화규소첨가반응과 알켄첨가반응에 의해 Gn+1형 나뭇가지꼴 거대분자로 성장하였다. Gn+2P세대 화합물은 $HSiMeCl_2$와의 수소화규소첨가반응 방법에 의해 모든 가지가 동일형 화합물을 형성하지 못했다. Gn과 Gn+1형 고분자 화합물은 9-BBN과의 반응과 반응생성물의 산화반응에 의해서 polysilol을 형성하였다. 반응의 정도는 NMR에 의해서 확인할 수 있었다.

Keywords

References

  1. C & EN v.20 D. A. O'Sullivan
  2. C & EN v.28 R. Dagani
  3. Nachr. Chem. Techn. Lab. v.42
  4. Nachr. Chem. Tech. Lab. v.44 T. K. Lindhorst
  5. 독일첨단과학기술개발 동향보고서(화학부문) 김정균(외)
  6. Angew. Chem. v.107 J. Issberner;R. Moore;F. Vogtle
  7. Angew. Chem. Int. Ed. Engl. v.33 J. Issberner;R. Moore;F. Vogtle
  8. Dendritic Molecules G. R. Newkome;C. N. Moorefield;F. Vogtle
  9. Aldrichimica Acta v.25 G. R. Newkome;C. N. Moorefield;G. R. Backer
  10. Tetrahedron v.53 M. K. Lothian-Tomalia;D. M. Hedstrand;D. A. Tomalia;A. B. Padias;H. K. Hall, Jr.
  11. Pure Appl. Chem. v.A31 no.11 J. M. J. Frechet;C. J. Hawker;K. L. Wooley
  12. Advances in dendritic macromolecules v.3 G. R. Newkome
  13. Inorg. Chem. v.35 P. Lange;A. Schier;H. Schmidbaur
  14. Inorg. Chem. Acta v.235 P. Lange;A. Schier;H. Schmidbaur
  15. Organometallics v.15 S. Achar;J. J. Vital;R. J. Pudaddephatt
  16. J. Am. Chem. Soc. v.114 G. Denti;S. Campagna;S. Serroni;M. Ciano;V. Balzani
  17. Inorg. Chem. v.31 S. Campagna;G. Denti;G. Serroni;M. Ciano;A. Juris;V. Balzani
  18. Inorg. Chem. v.33 A. Juri;V. Balzani;S. Campagna;G. Denti;S. Serroni;G. Frei;H. U. Gudel
  19. Chem. Rev. v.97 F. Zeng;S. C. Zimmerman
  20. Adv. Mater. v.5 A. W. van der Made;P. W. N. M. van Leeuwen;J. C. de Wilde;R. A. C. Brandes
  21. J. Chem. Soc., Chem. Commun. A. W. van der Made;P. W. N. M. van Leeuwen
  22. Chem. Unser. Zeit v.30 H. Frey;K. Lorenz;C. Lach
  23. Macromolecules v.28 K. Lorenz;R. Mulhaupt;H. Frey
  24. Adv. Mater. v.8 K. Lorenz;D. Holter;B. Stuhn;R. Mulhaupt;H. Frey
  25. Organometallics v.13 D. Seyferth;D. Y. Son;A. L. Rheingold;R. L. Ostrander
  26. Organometallics v.14 D. Seyferth;T. Kugita;A. L. Rheingold;G. P. A. Yab
  27. J. Am. Chem. Soc. v.117 A. Sekiguchi;M. Nanjo;C. Kabuto;H. Sakurai
  28. Adv. Mater. v.4 Y. H. Kim
  29. J. Org. Chem. v.62 V. Swali;N. J. Wells;J. Langley;M. Bradley
  30. J. Korean Chem. Soc. v.42 C. Kim;E. Park
  31. J. Organomet. Chem. v.547 C. Kim;K. An
  32. J. Organomet Chem. v.570 C. Kim;Y. Jeong;I. Jung
  33. J. Organomet Chem. v.553 C. Kim;M. Kim
  34. Main Group Metal Chem. v.21 C. Kim;A. Kwon
  35. Main Group Metal Chem. v.21 C. Kim;Y. Jeong
  36. Main Group Metal Chem. v.20 C. Kim;S. Choi
  37. Synthesis C. Kim;A. Kwon
  38. Inorg Chem. Commun. v.1 C. Kim
  39. Macromol. Rapid Commun. v.18 C. Lach;P. Muller;H. Frey;R. Mulhaut