Hyperbranched Polymer를 이용한 나뭇가지꼴 카보실란 거대분자의 합성

Synthesis of Dendritic Carbosilanes by the Use of Hyperbranched Polymers

  • 김정균 (동아대학교 자연과학대학 화학과) ;
  • 강성경 (동아대학교 자연과학대학 화학과) ;
  • 박은미 (동아대학교 자연과학대학 화학과)
  • 발행 : 19990800

초록

Hyperbranched polymer를 이용한 나뭇가지꼴 카보실란 거대분자를 합성하였다 Hyperbranched polymer의 영세대 화합물의 합성은 $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$형)의 수소화규소첨가반응 방법을 이용하여 합성하였다. Hyperbranched polymer $AB_2$$AB_3$형 고분자 화합물은 수소화규소첨가반응과 알켄첨가반응에 의해 Gn+1형 나뭇가지꼴 거대분자로 성장하였다. Gn+2P세대 화합물은 $HSiMeCl_2$와의 수소화규소첨가반응 방법에 의해 모든 가지가 동일형 화합물을 형성하지 못했다. Gn과 Gn+1형 고분자 화합물은 9-BBN과의 반응과 반응생성물의 산화반응에 의해서 polysilol을 형성하였다. 반응의 정도는 NMR에 의해서 확인할 수 있었다.

Dendritic carbosilanes based on hyperbranched polycarbosilanes as core molecule have been prepared The core molecules were obtained by the use of hydrosilation of $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$type). The hyperbranched core $AB_2\;and\; AB_3$ type polymers were generated to higher molecular dendritic carbosilanes Gn+1 by the use of hydrosilation and alkenylation sequence. The Gn+2P generations were not obtained as unified molecules by the use of hydrosilation with $HSiMeCl_2$. Gn and Gn+1 type polymers were produced to polysilol by the reaction of 9-BBN and alkali medium oxidation of hydroborated compounds. The degree for reaction has been controlled by the NMR spectroscopy.

키워드

참고문헌

  1. C & EN v.20 D. A. O'Sullivan
  2. C & EN v.28 R. Dagani
  3. Nachr. Chem. Techn. Lab. v.42
  4. Nachr. Chem. Tech. Lab. v.44 T. K. Lindhorst
  5. 독일첨단과학기술개발 동향보고서(화학부문) 김정균(외)
  6. Angew. Chem. v.107 J. Issberner;R. Moore;F. Vogtle
  7. Angew. Chem. Int. Ed. Engl. v.33 J. Issberner;R. Moore;F. Vogtle
  8. Dendritic Molecules G. R. Newkome;C. N. Moorefield;F. Vogtle
  9. Aldrichimica Acta v.25 G. R. Newkome;C. N. Moorefield;G. R. Backer
  10. Tetrahedron v.53 M. K. Lothian-Tomalia;D. M. Hedstrand;D. A. Tomalia;A. B. Padias;H. K. Hall, Jr.
  11. Pure Appl. Chem. v.A31 no.11 J. M. J. Frechet;C. J. Hawker;K. L. Wooley
  12. Advances in dendritic macromolecules v.3 G. R. Newkome
  13. Inorg. Chem. v.35 P. Lange;A. Schier;H. Schmidbaur
  14. Inorg. Chem. Acta v.235 P. Lange;A. Schier;H. Schmidbaur
  15. Organometallics v.15 S. Achar;J. J. Vital;R. J. Pudaddephatt
  16. J. Am. Chem. Soc. v.114 G. Denti;S. Campagna;S. Serroni;M. Ciano;V. Balzani
  17. Inorg. Chem. v.31 S. Campagna;G. Denti;G. Serroni;M. Ciano;A. Juris;V. Balzani
  18. Inorg. Chem. v.33 A. Juri;V. Balzani;S. Campagna;G. Denti;S. Serroni;G. Frei;H. U. Gudel
  19. Chem. Rev. v.97 F. Zeng;S. C. Zimmerman
  20. Adv. Mater. v.5 A. W. van der Made;P. W. N. M. van Leeuwen;J. C. de Wilde;R. A. C. Brandes
  21. J. Chem. Soc., Chem. Commun. A. W. van der Made;P. W. N. M. van Leeuwen
  22. Chem. Unser. Zeit v.30 H. Frey;K. Lorenz;C. Lach
  23. Macromolecules v.28 K. Lorenz;R. Mulhaupt;H. Frey
  24. Adv. Mater. v.8 K. Lorenz;D. Holter;B. Stuhn;R. Mulhaupt;H. Frey
  25. Organometallics v.13 D. Seyferth;D. Y. Son;A. L. Rheingold;R. L. Ostrander
  26. Organometallics v.14 D. Seyferth;T. Kugita;A. L. Rheingold;G. P. A. Yab
  27. J. Am. Chem. Soc. v.117 A. Sekiguchi;M. Nanjo;C. Kabuto;H. Sakurai
  28. Adv. Mater. v.4 Y. H. Kim
  29. J. Org. Chem. v.62 V. Swali;N. J. Wells;J. Langley;M. Bradley
  30. J. Korean Chem. Soc. v.42 C. Kim;E. Park
  31. J. Organomet. Chem. v.547 C. Kim;K. An
  32. J. Organomet Chem. v.570 C. Kim;Y. Jeong;I. Jung
  33. J. Organomet Chem. v.553 C. Kim;M. Kim
  34. Main Group Metal Chem. v.21 C. Kim;A. Kwon
  35. Main Group Metal Chem. v.21 C. Kim;Y. Jeong
  36. Main Group Metal Chem. v.20 C. Kim;S. Choi
  37. Synthesis C. Kim;A. Kwon
  38. Inorg Chem. Commun. v.1 C. Kim
  39. Macromol. Rapid Commun. v.18 C. Lach;P. Muller;H. Frey;R. Mulhaut