DOI QR코드

DOI QR Code

A Kinetic Study on the Adsorptionof Compact, Water-soluble Proteins onto Aqueous Surfaces


Abstract

Two compact sized globular proteins, β-lactoglobulin and α-lactalbumin were kinetically characterized at the aqueous solution surface with the measurement of surface pressure (π) and surface concentration (Γ) via a radiotracer method. The adsorption kinetics was of diffusion control at early times, the rates of increase of πand Γ being lower at longer times due to growing energy barrier. At low concentrations, an apparent time lag was observed in the evolution of π for β-lactoglobulin but not for α-lactalbumin which was shown to be due to the non-linear nature of the p- G relationship for the former. The area per molecule of an adsorbed β-lactoglobulin during adsorption was smaller than that for spread monolayer since β-lactoglobulin was not fully unfolded during the adsorption. For α-lactalbumin, however, no such difference in the molecular areas for adsorbed and spread monolayer was observed indicating thereby that α-lactalbumin unfolded much more rapidly (has looser tertiary structure) than β-lactoglobulin. Surface excess concentrations of α-lactalbumin was found to evolve in two steps possibly due to the change in the orientation of the adsorbed protein from a side-on to an end-on orientation.

Keywords

References

  1. Faraday Discuss. Chem. Soc. v.N59 Benjamins, J.;DeFeijiter, J. A.;Evans, M. T. A.;Graham, D. E.;Phillips, M. C.
  2. J. Colloid Interface Sci. v.18 MacRitchie, F.;Alexander, A. E.
  3. J. Colloid Interface Sci. v.18 MacRitchie, F.;Alexander, A. E.
  4. J. Colloid Interface Sci. v.18 MacRitchie, F.;Alexander, A. E.
  5. Langmuir v.7 Song, K. B.;Damodaran, S.
  6. J. Colloid Interface Sci. v.176 Hansen, F. K.;Myrvold, R.
  7. Food Hydrocolloids v.10 Wustneck, R.;Kragel, J.;Miller, R.;Fainerman, V. B.;Wilde, P. J.;Sarkar, D. K.;Clark, D. C.
  8. J. Colloid Interface Sci. v.137 Hunter, J. R.;Kilpatrick, P. K.;Carbonell, R.
  9. J. Colloid Interface Sci. v.70 Graham, D.E.;Phillips, M. C.
  10. J. Colloid Interface Sci. v.70 Graham, D. E.;Phillips, M. C.
  11. J. Colloid Interface Sci. v.70 Graham, D. E.;Phillips, M. C.
  12. J. Colloid Interface Sci. v.191 Cho, D.;Narsimhan, G.;Franses, E. I.
  13. J. Chem. Soc. Faraday Trans v.91 Clark, D. C.;Husband, F.;Wilde, P.J.;Cornec, M.;Miller, R.;Kragel, J.;Wustneck, R.
  14. PhD Thesis, Purdue University Cho, D.
  15. J. Colloid Interface Sci. v.178 Cho, D.;Narsimhan, G.;Franses, E.I.
  16. Anal. Biochem. v.150 Smith, P. K.;Krohn, R. I.;Hermanson, G. T.;Mellia, A.K.;Gartner, F. H.;Provenzano, M. D.;Fujimoto, E. K.;Goeke, N. M.;Olson, B. J.;Klenk, D. C.
  17. J. Colloid Interface Sci. v.142 Hunter, J.R.;Kilpatrick, P.K.;Carbonell, R.G.
  18. J. Colloid Sci. v.15 Trurnit, H. J.
  19. Colloids and surfaces A v.117 Cho, D.;Franses, E.I.;Narsimhan, G.
  20. J. Colloid Interface Sci. v.64 Tornberg, E.
  21. J. Colloid Interface Sci. v.78 Ward, A.J.I.;Regan, L. H.
  22. Food emulsions and foams De Feijter, J. A.;Benjamins, J.;E. Dickinson(ed.)
  23. From Clone to Clinic Wei, A.P.;Herron, J. N.;Andrade, J. D.;B.J.A. Crommelin(ed.);H. Schellekens(ed.)
  24. J. Colloid Interface Sci. v.150 Paulsson, M.;Dejmek, P.
  25. J. Biochim. Biophys. Acta v.59 Georges, C.;Guinand, S.;Tonnelat
  26. Critical Review in Biochemistry and Molecular Biology v.24 Kronman, M. J.
  27. J. Agric. Food Chem. v.46 Cornec, M.;Cho, D.;Narsimhan, G.
  28. Food Hydrocolloids v.8 Mutsumara, Y.;Mitsui, S.;Dickinson, E.;Mori, T.
  29. J. Colloid Interface Sci. v.154 Suttiprasit, P.;Krisdhasima, V.;McGuire, J.
  30. Food Technology v.49 Aguilera, J. M.
  31. Colloids and Surfaces B: Biointerfaces v.4 Corredig, M.;Dalgleish, D. G.
  32. Colloids and Surfaces B:Biointerfaces v.2 Haynes, C. A.;Norde, W.
  33. Biochim. Biophys. Acta v.200 Mitchell, J.;Irons, L.;Palmer, G. J. A.
  34. J Colloid Interface Sci. v.41 Bull, H. B.