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The properties of semiflexible polymer brushes are studied by applying the classical limit of mean-field ap-
proach for chains with marginal chain stiffness. Using the mean-spherical Gaussian model, the most probable
configuration for semiflexible chains is obtained, which reduces to the parabolic brush of Milner ¢f of. [Mac-
romolecules 1988, 21, 2610] in the flexible limit. From this configuration, equilibrium brush height as well as

interactions between semiflexible brushes are estimated.

Introduction

Polymer chains with one ends tethered to an interface or a
surface with high altachment density form  polymer
brushes.!? The polymer brushes in solution, showing quite
different properties from free polymer chains in that they
exhibit deformed conliguration even in equilibrium condi-
tion duc to the excluded volume clfect. become a basic
model for a varicty of polymeric systems such as polymeric
surfactants, stabilization of colloidal dispersions. and wet-
ting properties of surfaces and adhesion. The unique struc-
ture of the polymer brushes has thus motivated a number ol
expetimental and theoretical studics. One of the most impot-
tant applications of the polymer brushes is the colloid stab-
lilization by cnd-tethered chains.™ When the coverage ol
end-tethered chains is low and poor solvent is used. solid
colloid particles may flocculale but as the grafting density is
increased and solvent quality is improved, the polymer
brushes separate colloidal particles 1o a distance at which
van der Waals interaction is too weak to keep the particles
together due to the repulsive foree between the brushes aris-
ing from high osmotic pressure inside the brushes.

Pioneering work on polymer brushes was given by
Alexander® and de Gennes.” Their equilibrium brush theory
assuning uniformly stretched chains with a simple step func-
tion profile is based upon a fiee energy balance argument. By
balancing the osmotic pressure resulting from excluded volume
interaction of the brushes with the elastic stretching forces of
elongation tavoring to have maximum configurational entropy,
they obtained 4 ~ A{wa P)\7, f~ Nwo /¥ where # is brush
height, 7'is the free energy of a chain in brush phase, & is the
number of brush repeating units, & is the surtace density. @ is
the excluded volume parameter and / is the statistical segment
length. Their original work has prompted a large body of litera-
ture dealing with different approaches such as the self~consis-
tent field equation first developed by Dolan and Fdwards,!
scaling approach’ and more recently computer simulations.® ¢
Previous studies, however, mostly focused on flexible polymer
brushes and few studies have reported on semiflexible polymer
brushes.

Most real polymer chains possess inherent backbone rigid-
ity.!!"1* Polypeptides. deoxyribonucleic acid (DNA) in helical

state, and liquid crystalline polymer (LCP) arc well known
examples of semiflexible chain. These semillexible chains also
have potential usc in controlling surlace or interfacial propertics
through increased brush height. Studics on the flexible chains
arc mainly based on the random flight statistics'""17 but the char-
acteristic of the random (light chain is violated by semillexibil-
ity arising {from hindrance to intemal rotation and structural
constraint. This implics that a large number of real polymer
chains do not obey the simple statistics of random [light chain
(ie., flexible chain) and conscquently other appropriate model
is nceded. Among a number of models presented (or the semi-
flexible chains, the most well-kknown model is the worm-like
chain proposed by Kratky and Porod'® in which coarse graining
is introduced 1o replace mathematically intractable discrete
chains with continuous models. Several models for both MNexi-
ble and semiflexible chains are shown in Figure 1. On the
other hand. Saito, Takahashi, and Yunoki {STY)¥ have
employed the Wiener type integral formulation to provide a
functional integral representation for the worm-like chain. [n
present study, the classical limit mean-ficld cquation for
semiflexible polymer brushes is presented by employing a
model based on the worm-like chain and the physical prop-
erties predicted from the equation are discussed.

Theoretical Model for Semiflexible Polymer Brushes

[n order to incorporate semitlexibility in polymer chains,

(a)
V\lA \/\/\
|
(b) (c)

Figure 1. Various models for both flexible and semillexible
polymer chains: () Bead-Bond Model. (b) Semitlexible Persistent
Chain Modcl and (¢) Semiflexible Freely-Jointed Model.
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the Hamiltonian for flexible chains should be modified.
In addition to the Wicner form SH = 3]\:(! any

n addition to the Wicner form f3 ;2/:(. 1((]7) ac

counting for the ¢lastic encrgy of flexible chains. where =
Vgt and #; 1s the position vector of a monomer on /th chain
at a contour distance Talong the chain. a curvature (bending)
energy term which is the scoond derivative with respect to
contour length is introduced to simulate the semiflexibility.
This model can be casily extended to more gencralized casce
by incorporating higher derivative terms,'™
The classical model used to describe the configurational
statistics of a scmiflexible polvmer is the wormlike chain
defined by a function given below!*:
a ri]_}
; ()
dr

where € 1s the bending clastic constant with a dimension ol
energy per length and the notation Jl)r,( 7) denotes the func-
tional integration over all trajectorics of the chain. subject o
finile chain cxtensibility constraint |dri/dt|/{ = 1. Unflortu-
nalcly. [or a number of applications the wormlike chain is
mathcmatically cumbersome due to the finilc chain extensi-
bility constramt |dri/dt| // = 1. As a result. mcan-spherical or
spherical approximation™ is introduced to simplily calcula-
tions with the model. vet still retaining the cssence of scmi-
(lexibility of polymer chains. This procedure is. however.
analogous 1o cimploving the Gaussian modcl. Conscquently.
the following mean-spherical Gaussian modcl is used.

= [[1Pn (o @

dzrl. :
ar

0= JH Dr, ‘rexp{_%’ﬁgzji\-’/

xp Z J-T(dr)

where the functional integral over #{7) 18 now uncon-
straincd. To model the interactions between polymer brush

]. N
2_/'682',"[,, o

dr,
chains. the osmotic (crm ﬁHo:deU[ri(T), d_rl] 1$ intro-

duced. which usually includes amisotropic intcractions as
well as isotropic inicractions between the brush chains,

The scll-consistent ficld cquation. which is cssentially the
Fokker-Planck tvpe cquation in the casc of a single chain,
could be obtaincd by minimizing the frec encrgy 1= —-InQ.
which in tum could be solved sclf-consistently through a
propagator (;.'”

[{% 2; Vi, +U](‘(r W)= 0 3)
where u = (dr/dDil. 7 is the dimensionless interaction
potential between chain scgments. and Sgf represents the
chain stiffness which is inversely proportional to the flexibil-
ity paramcter (o) defined as o ~ 7/A7" with 7. the contour
Icngth and A" the persistence length,
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Most Probable Configuration and Physical
Properties of Semiflexible Polymer Brushes

When we deal with long and stretched chains. the distribu-
tion of chain configuration is sharply pcaked around the
most probable configuration (MPC). that is. onc which mini-
mivcs the exponent of the partition function. [n this work. we
usc the classical limit mean-fickd approach wherein fluctua-
tions around the most probable path arc neglected as poly-
mer chains extend above their Gaussian random coil size.
The semiflexible chains generally adopt more stretched con-
figuration duc to chain stilfncss arising from molccular
structures such as mesogenic groups along the liquid crystal-
linc polymer backbone and clectronic delocalization of con-

jugated polymer chams™' as well as isotropic intcraction

resulting from the repulsion between segments analogous o
flexible polymer brushes. [n the case of semiflexible poly-
mcr brushes. there also exist anisotropic interactions which
arc responsible for isotropic-nematic phase transition. How-
cver. when we conline semiflexible brushes to a system with
only marginal scmillexibility and in a moderately stretched
regime. we can simply assume isotropic intcractions, mean-
mg that in the regime considered the order parameter. which
isdefincdas S = 1/2(3cos ¢ - 1) representing the degree
ol anisotropic intcractions arising from chain stifThcss and
becoming zero for [lexible brushes. is almost constant and
not of significance in the marginally scmiflexible regime
considered. By applying the finite chain extensibility through
the spherical approximation and cmploying the Euler-Lagrange
cquation up Lo the second order. the most probable configura-
tion for the semillexible chains was obtained:
Md—’ - €[L:] = k,TVU )
Iar \dr
Without the interaction tcrm ((gT V U). the cquation 15 a
fourth-order difTerential cqualion describing the bending of a
homogcncous rigid rod. ™ When we assume that cach
brush chain is cnd-tcthered normal to the grafling surface.
the facts that all the chains are grafted at the same surlace
and have the same polymerization index N simplify the
problem. This mcans that we usc the conventional cqual
time condition z = 0. (dz/d7)/f = -1 at the grafied end (7=N)
and z= 4. z/d7T> = 0 for the free end (7= 0). Retaimng only
dominant terms. the trajectory becomes

oo (‘L+h|x+|)cx (L (T-NY)
U )
_—cxp(k,_r)+(r— l )SII'IPL_,'T &)

l 1 | _
+ (h+ k_+ (I_H - J):l)cxp(—k, NY)yeos|h_ |1
where A =—A- = ((Lifel + ((l/ﬁd)"+88/ﬁe!)"”) DA, =
i({(=1/Bel + ((1/Bel)y*+8B/Bef)2)i2))* with B = /8N and #
is the brush height. Tn the ﬂc“blc brush limit where fSef
approaches zcro. z becomes Acos (TV/27) which is the ¢lassi-
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Figure 2. Trajectories of a brush chain normal to a gralting suriace
with different degrees of chain rigidity (8eh. The solid line
indicates the classical limit solution of completely flexible polymer
brushes.

cal limit mean-field solution of flexible brushes as shown as
a solid curve in Figure 2.2 For flexible polymer brushes ( e/
— 0). the trajectory results in the parabolic density profile of
Milner et al** while as chain stiffness is increased, the tra-
jectory begins to deviate from the solid curve and asymptoti-
cally approaches the diagonal line indicated by the long
dashed line in Figure 2 corresponding to a chain trajectory of
completely stretched chains. This behavior implies that as chain
stiffness is increased, the conformation of brushes gradually
changes from a parabolic density profile of completely flexible
brushes to a step function density profile for completely
stretched brushes. which is in good agreement with a previ-
ous study of Wijmans ef «/.>* in which the self-consistent
field (SCF) lattice model was employed. The free energy per
chain is obtained from the partition function BF — —InQ in
general. [n the classical limit, however, the free energy can
be directly derived (rom the general free energy expression

3 i dl' i 2 I ¥ dzri

- Z‘gﬁ{df(dr) 3P, d{dr’]
ing the classical trajectory Eq. (3) into this expression. We
also employed the equal time potential of the lorm L4(z) — 4-
Bz* with A(f) — Nowh| B#/5 and B — m8N* which is
obtained (rom the equal time constraint meaning that all the
chains are end grafted at the same surlace and have the same
polymetization index A**. The dominant contribution lrom the
stilTness of chains. after dropping unimportant numerical coeffi-
cients, becomes (Bef)'“AINT1 O(Bel), thus the total [ree encigy
obtained can be written as (ollows:

2 2
Pk (pen' L w(]%)] ©)

by substitut-

In the flexible brush limit (Bef — 0), the equilibrium brush
height is obtained from minimization ol the free encrgy with
respect 10 brush height resulting in the relation #* ~ M wof?)'?,
which is the typical scaling relationship of flexible polymer
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brushes. When the semiflexibility of a brush chain is consid-
ered (B&l > 0). the equilibrium brush height is also obtained
from minimization of the free energy with respect to brush
height leading to the relation /7% — S+7. where S and T are

wo:-\f;
a4

+ ((waN'Y 7168 + woN' (Bely' 2 74321)

S ( +(Bely 2 /216

172,173
)

(7)

(wm\-'“l
4
(- (0N Y /167 — waN Y Bely’ /4321

7= —(Bely /216

1/2 173
) (®)
Because we [ocus on the scaling relationships the numerical
coc(licients arce not important and could be eliminated from the
rclations. In the regime where the excluded volume effeet is
more important than the semillexibility of brush chains, the
equilibtium brush height could be obtained in a simpler form by
pertutbatively expanding the equilibrium brush height neglect-
ing the higher order terms than ( Sef) V2
" 173,
/1~ (woe/l)y "N+ (Bel)

12 )

This means that the semiflexibility of a brush chain still
contributes 1o the cquilibrium brush height as schematically
shown in Figure 3. [n the (igure, the numetical coclficient is
fixed to unity for convenience.

Recently, there have been several studies on the character-
ization of polymer brushes grafied at solid-liquid inter(ace.**
Klein et al?¢ investigated the reduction of [rictional force
between two solid surfaces bearing polymer brushes using a
surface force apparatus. [n their experiment, PS chains were
end-grafied on mica surlaces in toluene which is a good sol-
vent 1o PS. The persistent length of the worm-like chain
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Figure 3. Equilibrium brush height as a function ol polymerization
index N for dilferent degrees ol chain rigidity with @wo?f = 0.1, The
brush height should go through the origin regardless of the
semitlexibility of a chain in a region close to zero polymerization
index. However. each line with a different chain rigidity is drawn in
a straight line 10 show the extrapolated intercept value.
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model (2A4) '. which is directly propottional to the chain
stitfhess, is 10.4 for PDMS chain at 25 °C ,while the (24) ! for
PS ranges trom 13.2 to 18.8 at 27 °C depending on tacticity.®
meaning that PS chain is stiffer than PDMS.

Figure 4 illustrates the brush height of end-tethered PS in
toluene plotted against PS molecular weight. The linear rela-
tionship between brush height and molecular weight is evi-
dent and from the best fit, the brush height intercept was
estimated to be 21, which is the evidence of semiflexibility
contribution to the equilibrium brush height of the PS brushes
in the limit of zero molecular weight.

When two particles are brought into a close distance, a
strong repulsive force occurs due to the interaction between
end-anchored brushes. In steric stabilization of colloidal par-
ticles, the interaction between end-tethered brushes plays a
crucial role in preventing flocculation in suspension. Using
the total free energy

F.v'mu/k.ff‘T‘ [?\3?(;_1')_(;?“): - (BE!)I ";ll(ﬁ)h*

NI jps
+ w,\-’zc(}ﬁ)L}
I Jhs

and the equilibrium brus height #*/I~-(wa /1) "N+ (Bel) 12
the compressional free energy for semiflexible chains is
given below, where we neglected the higher order terms than

(BeD™:

273 ., 1739
F.'mu/k.‘! T—"Cl [‘N’(w_lc;) + C'z(ﬁef) a _(Q)T(y) ]lf_ —Cr

2/,1]

(ﬁsi)‘”[“’—l")mu +;\f‘(%’) - (10)

i

1/3

where » = A/A*, h is the compressed brush height, #* is the
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Figure 4. Brush height as a lunction of PS molecular weight. Data
was taken from rell®* The brush height scales as 7 - Ao' * in goad
solvent and the grafting density & is given by 1/5y° where N s the
chain length. and Sy is the mean inter-anchor spacing. The brush
height. rescaled by Sy 10 remove the graliing density effect. is
needed in the ordinate.
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Figure 5. Compressional free encrgy as a function of u (= 4/ for
different degrees of chain rigidity with woif = 0.1 and N=100 where
I is the compressed brush height and 77 is the equilibrium brush
height, The coelTicients used in Eg. (10 are ¢y =05, ¢x= T and 3= 0.

equilibrium brush height and ¢, ¢, ¢; are positive numerical
constants.

Eq. (10} also shows the effect of chain rigidity on com-
pressional free energy. The first and last terms on the right
hand side of Eq. (10) represent contributions to compres-
sional free energy resulting from conformational entropy of
the chain and osmotic interactions. respectively. which is the
well known form in the case of completely flexible brushes.
The second and third terms containing f&f are the contribu-
tions due to chain rigidity. While the second term causes the
increase of free energy due to the bending energy of semi-
flexible chains, the third term decreases the free energy by
reducing osmotic interactions since the chain rigidity
decreases the conformational entropy of the semiflexible
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Figure 6. Compressional fice cnergy as a function of u (= A#*) for

different degrees of chain rigidity with wa?/ 0.1 and N 100. The
coellicients used in kg, (10) are ¢ = 0.5, ¢x= 10, and ¢3= 10,
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chains, Conscquently. the actual feature of the resulting
compressional frce energy depends on relatise magnitude of
the two rigidity terms with opposite signs. If the decrease of
conformatonal cntropy duc 1o semiflexibility of chains is
ncgligible. the [ree energy will exhibit an incrcased value
with increasing chain rigidity. When the third term becomes
comparable with the sccond term in Eq. (10). the compres-
sional frce cnergy decrcases with increasing chain rigidity
duc to the fact that reduced osmotic interactions between
scemiflexible chains are dominant. The two different cases
for the relative magnitude of sccond and third terms in Eq.
(10y arc shown in Figurcs 3 and 6. In Figurcs 3 and 6. one
can netice the abrupt increase of compressional [rec energy
as the compression ratio u becomes smaller. This is duc to
the term 1/« originating from the excluded volume interac-
tion between brush chains.™ where the compressed brush
height b is onc hall’ of the separation distance (d) between
grafting surfaccs. /~d/2. This c¢xcluded volume interaction
term viclds the typical distance behavior of the free energy of
compressed brush lavers in (he limit of strong compression as
shown in Figurcs 3 and 6.

Summary

The cquilibrium propertics of semiflexible polymer brushes
were presenied using the classical limit of a mean-licld theory
for polvmer chains with marginal stiffness. The continuous
model bascd on worm-like chain was employed and the most
probable path for semiflexible chams was analvtically obtained.
from which cquilibrium brush height as well as interaction
between semiflexible brushes was cstimated.
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