DOI QR코드

DOI QR Code

Morecular Orbital Caculations for the Reactions of 2,5-dimethyl Pyrrole with Phenylsulfonyl Chloride

  • Published : 1999.08.20

Abstract

Electrophilic substitutions on β-position of 2,5-dimethyl pyrrole have been investigated theoretically. The electron donating methyl groups enrich electron densities on C-3, C-4 positions and π* interactions with methyl groups substituted on C-2 and C-5 positions pushed up the HOMO level of the pyrroles consequently induce rapid substitutions on C-3, C-4 sites. Substitution of phenylsulfonyl group on nitrogen stabilized LUMO levels through weak π bonding interactions. Unexpected deoxidation reaction underwent on the sulfonyl group substituted at C-3 position. The structures were solved by X-ray crystallography. Meanwhile, gas phase HF/6-31G* and density functional method (B3LYP/6-31G*) calculations gave favorable energies for 1-phenylsulfinyl pyrrole (6) over 3-phenylsulfinyl pyrrole (5) by 3.6-4.7 kcal/mol which is contrary to the experimental result. However the methods involve the effects of molecular polarizability and solvent, molecular dynamics (MD) and ab-initio self consistent reaction field (SCRF) calculations showed same trend as experiments. According to MD calculations, compound 5 is more stable than compound 6 by 4.15 kcal/mol and the SCRF, HF/6-31G* calculations gave more stable energy value for structure 5 than 6 by 0.03 kcal/mol.

Keywords

References

  1. Advances in Heterocyclic Chemistry v.11 Jones, R. A.;Katritzky, A. R.(Ed.); Boulton, A. J.(Ed.)
  2. Advances in Heterocyclic Chemistry v.13 Marino, G.;Katritzky, A. R.(Ed.); Boulton, A. J.(Ed.)
  3. Comprehensive Heterocyclic Chemistry v.4 Bird, C. W.;Cheesman, G. W. H.;Katritzky, A.(Ed.);Ress, C. W.(Ed.)
  4. Chem. Pharm. Bull. v.41 Oda, K.;Machida, M.
  5. J. Org. Chem. v.36 Cooper, G.
  6. Friedel-Crafts and Related Reactions Olah, G. A
  7. Comprehensive Heterocyclic Chemistry v.4 Jones, R. A.;Katritzky, A.(Ed.);Ress, C. W.(Ed.)
  8. Chem. Pharm. Bull. v.44 Tani, M.;Ariyasu, T.;Nishiyama, C.;Hagiwara, H.;Watanabe, T.;Yokoyama, Y.;Murakami, Y.
  9. Synthesis Anderson, H. J.;Loader, C. E.
  10. J. Org. Chem. v.48 Kakushima, M.;Hamel, P.;Frenette, R.;Rokach, J.
  11. Can. J. Chem. v.63 Anderson, H. J.;Loader, C. E.;Xu, R. X.;Le, N.;Gogan, N. J.;McDonald, R.;Edwards, L. G.
  12. J. Chem. Soc., Perkin Trans. 1 Cadamuro, S.;Degani, I.;Dughera, S.;Fochi, R.;Gatti, A.;Piscopo, L.
  13. Bull. Korean Chem. Soc. v.20 Kim, J. B.;Jin, G.;Seong, S.;Yu, C. M.;Shim, Y. K.
  14. Gaussian 94 Frisch, M. T.;Trucks, G. W.;Schlegel, H. B.;Gill, P. M. W.;Johnson, B. G.;Robb, M. A.;Cheeseman, J. R.;Keith, T. A.;Petterson, G. A.;Montgomery, J. A.;Raghavanchari, K.;Al-Laham, M. A.;Zakrzewski, V. G.;Ortiz, J. V.;Foresman, J. B.;Cioslowski, J.;Stefanov, B. B.;Nanayakkara, A.;Challacombe, M.;Peng, C. Y.;Ayala, P. Y.;Chen, W.;Wong, M. W.;Andres, J. L.;Replogle, E. S.;Gomperts, R.;Martin, R. L.;Fax, D. J.;Binkley, J. S.;Defrees, D. J.;Baker, J.;Stewart, J. P.;Head-Gordon, M.;Gonzalez, C.;Pople, J. A.
  15. Cerius 2(Ver. 3.6.) Molecular Simulation Inc.
  16. J. Am. Chem. Soc. v.113 Allinger, N. L.;Chen, K.;Rahman, M.;Pathiaseril, A.
  17. Angew. Chem. Int. Ed. Engl. v.29 Gunsteren, W. F.;Berendsen, H. J. C.
  18. J. Comp. Chem. v.10 Stewart, J. J. P.
  19. J. Comp. Chem. v.10 Stewart, J. J. P.
  20. J. Chem. Phys. v.54 Ditchfield, R.;Hehre, W. J.;Pople, J. A.
  21. J. Am. Chem. Soc. v.102 Binkley, J. S.;Pople, J. A.;Hehre, W. J.
  22. Phys. Rev. A v.38 Becke, A. D.
  23. Phys. Rev. B v.37 Lee, C.;Yang, W.;Parr, R. G.
  24. Mol. Phys. v.29 Tapia, O.;Goschinski, O.
  25. J. Am. Chem. Soc. v.114 Wong, M. W.;Wiberg, K. B.;Frisch, M. J.
  26. J. Chem. Soc., Perkin. Trans. 2 Parchment, O. G.;Hiller, I. H.;Green, D. V. S.
  27. J. Am. Chem. Soc. v.113 Wong, M. W.;Frisch, M. J.;Wiberg, K. B.