DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • Published : 1999.08.20

Abstract

We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.

Keywords

References

  1. Organic Chemistry(4th ed.) Graham Solomon, T. W.
  2. Organic Chemistry(5th ed.) Morrison, R. T.;Boyd, R. N.
  3. Discuss. Faraday Soc. v.66 Ryckaert, J. P.;Bellemans, A.
  4. Bull. Korean Chem. Soc. v.17 Lee, S. H.;Lee, H.;Park, H.;Rasaiah, J. C.
  5. Comput. Phys. Commun. v.62 Chynoweth, S.;Klomp, U. C.;Scales, L. E.
  6. J. Chem. Phys. v.95 Chynoweth, S.;Klomp, U. C.;Michopoulos, Y.
  7. J. Chem. Soc. Faraday Trans. v.88 Berker, A.;Chynoweth, S.;Klomp, U. C.;Michopoulos, Y.
  8. J. Chem. Soc., Perkin Trans. v.2 White, D. N. J.;Boville, M. J.
  9. Phys.Rev. v.A28 Evans, D. J.;Hoover, W. G.;Failor, B. H.;Moran, B.;Ladd, A. J. C.
  10. Chem. Phys. Lett. v.129 Simmons, A. J. D.;Cummings, P. T.
  11. Numerical Initial Value Problems in Ordinary Differential Equation Gear, C. W.
  12. J. Chem. Phys. v.22 Green, M. S.
  13. J. Phys. Soc. Jpn. v.12 Kubo, R.
  14. Bull. Korean Chem. Soc. v.12 Moon, C. B.;Moon, G. K.;Lee, S. H.
  15. Ann. Rev. Phys. Chem. v.16 Zwanzig, R.
  16. Bull. Kor. Chem. Soc. v.18 Lee, S. H.;Lee, H.;Pak, H.
  17. Bull. Kor. Chem. Soc. v.18 Lee, S. H.;Lee, H.;Pak, H.
  18. J. Chem. Phys. v.100 Davis, P. J.;Evans, D. J.
  19. Statistical Mechanics of Nonequilibrium Liquids Evans, D. J.;Morriss, G. P.
  20. Non-equilibrium Thermodynamics deGroot, S. R.;Mazur, P.
  21. Mol. Sim. Lee, S. H.