DOI QR코드

DOI QR Code

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • Published : 1999.07.20

Abstract

Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

Keywords

References

  1. Practical fluorescence Guilbault, G. G.
  2. Principles of Fluorescence Spectroscopy Lakowicz, J. R.
  3. Chemosensors of ion and Molecule Recognition Desvergne, J. P.;Czarnik, A. W.
  4. Biophysical and biochemical Aspects of Fluorescence Spectroscopy Dewey, T. G.
  5. J. Am. Chem. Soc. v.108 Bell, T. W.;Firestone, A.
  6. Angew. Chem. Int. Ed. Engl. v.29 Bell, T. W.;Liu, J.
  7. J. Am. Chem. Soc. v.99 Sousa, L. R.;Larson, J. M.
  8. J. Chem. Soc., Chem. Commun. de Silva, A. P.;de Silva, S. A.
  9. J. Am. Chem. Soc. v.110 Huston, M. E.;Haider, K. W.;Czamik, A. W.
  10. J. Org. Chem. v.93 Chae, M. Y.;Cherian, X. M.;Czarnik, A. W.
  11. J. Am. Chem. Soc. v.109 Nanjappan, P.;Czarnik. A. W.
  12. J. Am. Chemm. Soc. v.114 Yoon, J. Y.;Czarnik. A. W.
  13. J. Am. Chem. Soc. v.112 Huston, M. E.;Engleman, C.;Czarnik. A. W.
  14. J. Am. Chem. Soc. v.112 Czamik. A. W.;van Arman, S. A.
  15. J. Chem. Soc., Chem. Commun. de SIilva, A. P.;gunaratine, H. Q. N.;Maguire, G. E. M.
  16. J. Chem. Soc., Chem. Commun. James, T. D.;Ssandanayake, K. R. A. S.;Shinkai, S.
  17. Acc. Chem. Res. v.27 Czarnik. A. W.
  18. J. Am. Chem. Soc. v.106 Cox, G. S.;Turro, N. J.
  19. J. Am. Chem. Soc. v.106 Gatto, V. J.;Gokel, G. W.
  20. Electrochimica Acta v.42 Maria, R. M.;Hector, J. C.;Carlos, R. C.
  21. J. Am. Chem. Soc. v.112 Akkaya, E. U.;Huston, M. E.;Czamik. A. W.
  22. J. Chem. Phys. v.87 Ghosh, S.;Petrin, M.;Maki, A. H.pSousa, L. R.
  23. Chem. Phys. Lett. v.9 Chandross, E. A.;Thomas, H. T.
  24. J. Chem. Soc., Chem. Commun. Brimage, D. R.;Davidson, R. S.
  25. J. Chem. Soc., Chem. Commun. de Silva, A. P.;Ripasinghe, R. A. D. D.
  26. J. Am. Chem. Soc. v.111 Fages, F.;Desvergne, J. P.;Bouas-Laurent, H.;Marsau, P.;Lehn, J. M.;Kotzyba. H. F.;Albrecht. G. A.;Al-Joub bech, M.
  27. ACS Symposium series 538 Fluorescent Chemosensors for Ion and Molecule Recognition Czarnik, A. W.