DOI QR코드

DOI QR Code

Application of Variable Selection for Prediction of Target Concentration

  • Published : 1999.05.20

Abstract

Many types of chemical data tend to be characterized by many measured variables on each of a few observations. In this situation, target concentration can be predicted using multivariate statistical modeling. However, it is necessary to use a few variables considering size and cost of instrumentation, for an example, for development of a portable biomedical instrument. This study presents, with a spectral data set of total hemoglobin in whole blood, the possibility that modeling using only a few variables can improve predictability compared to modeling using all of the variables. Predictability from the model using three wavelengths selected from all possible regression method was improved, compared to the model using whole spectra (whole spectra: SEP = 0.4 g/dL, 3-wavelengths: SEP=0.3 g/dL). It appears that the proper selection of variables can be more effective than using whole spectra for determining the hemoglobin concentration in whole blood.

Keywords

References

  1. Multivariate Calibration Martens, H.;Naes, T.
  2. Communications in Statistics-Stimulation and Computation v.17 Helland, I. S.
  3. Perspective in Probability and Statistics Wold, H.;Gani, J.(ed.)
  4. Journal of Chemometrics v.1 Lorber, A.;Wangen, L. E.;Kowalski, B. R.
  5. Journal of Royal Statistical Society, Series B v.52 Stone, M.;Brooks, R. J.
  6. Journal of American Statistical Association v.60 Massy, W. F.
  7. Technometrics v.8 Hoerl, A. E.;Kennard, R. W.
  8. Technometrics v.12 Hoerl, A. E.;Kennard, R. W.
  9. Technometrics v.12 Hoerl, A. E.;Kennard, R. W.
  10. Technometrics v.35 Frank, I. E.;Friedman, J. H.
  11. Applied Spectroscopy v.39 Geladi, P.;MacDougall, D.;Martens, H.
  12. Applied Spectroscopy v.43 Barnes, B. J.;Dhanoa, M. S.;Lister, S. J.
  13. PLSplus/IQ User's Guide Galactic Industries Corporation
  14. Applied Spectroscopy v.42 Fuller, M. P.;Ritter, G. L.;Draper, C. S.
  15. Cereal Chemistry v.62 Norris, K. H.;Williams, P. C.
  16. Proceedings of the 1982 IUFST Symposium Norris, K. H.
  17. Analytical Chemistry v.36 Savitsky, A.;Golay, M. J. E.
  18. Analytical Chemistry v.44 Steiner, J.;Termonia, Y.;Deltour, J.
  19. Analytical Chemistry v.50 Madden, H. M.
  20. Technometrics v.8 Gorman, J. W.;Toman, R. J.
  21. Applied Regression Analysis Draper, N. R.;Smith, H.
  22. Technometrics v.9 Hocking, R. R.;Leslie, R. N.
  23. Biometrika v.54 Beale, E. M. L.;Kendall, M. G.;Mann, D. W.
  24. Technometrics v.12 LaMotte, L. R.;Hocking, R. R.
  25. Strategic Analysis System Barr, A. J.;Goodnight, J. H.
  26. Technometrics v.16 Furnival, G. M.;Wilson, R. W. Jr.
  27. IEEE v.44 Ham, F. M.;Kostanic, I. N.;Cohen, G. M.;Patel, K.;Gooch, B. R.
  28. Anal. Chem. v.59 Beebe, K. R.;Kowalski, B. R.
  29. Applied Statististics v.16 Newton, R. G.;Spurrell, D. J.
  30. Applied Statististics v.16 Newton, R. G.;Spurrell, D. J.
  31. Technometrics v.13 Furnival, G. M.
  32. Technometrics v.14 Morgan, J. A.;Tatar, J. F.
  33. Journal of Royal Statistical Society v.29 Tukey, J. W.
  34. Technometrics v.10 Rothman, D.
  35. The American Statistician v.26 Crocker, D. C.
  36. Technometrics v.15 Mallows, C. L.
  37. Journal of Royal Statistical Society v.36 Stone, M.