Abstract
Structural characteristics of isotactic p-alkylphenol acetaldehyde novolak resins with methyl, t-butyl, and t-octyl as the p-substituent and p-t-butylphenol aldehyde novolak resins with methylene, ethylidene, and propylidene as the linkage were calculated using molecular mechanics and molecular dynamics. The five p-alkylphenol aldehyde resins were found to have common structural characteristics that hydroxyl groups of the p-alkylphenols cluster in the center of the molecule by intramolecular hydrogen bonds of hydroxyl groups of the adjacent p-alkylphenols and the alkyl groups are extended out. Distances between oxygen atoms and between p-carbon atoms of the adjacent p-alkylphenols become longer as the size of the p-substituent increases from methyl to toctyl. Bond angles of the linkage built between the adjacent p-alkylphenols become wider by increasing the p-substituent size and by decreasing the linkage size.