Diastereoselective Reduction and Grignard Reaction of 3-Aryltetrahydropenta [d]isoxazol-4-ones

Hyoung Rae Kim,* Seung II Shin, Hyun Ju Park, Dong Ju Jeon, and Eung K. Ryu
Bioorganic Science Division, Korea Research Institue of Chemical Technology, P. O. Box 107, Yusong, Taejon 305-606, Korea Received October 24. 1998

1.3-Dipolar cycloaddition reactions of nitrile oxides with olefins are very interesting reactions in organic synthesis due to their facile induction of stereocenters ${ }^{1}$ and easy conversion ${ }^{2}$ of the resulting isoxazolines to synthetically useful functional groups, such as β-hydroxyketones. ${ }^{\text {ff.3 }} \beta$ hydroxyamines, ${ }^{4} \alpha . \beta$-unsaturated ketones, ${ }^{5}$ substituted tetrahydrofurans. ${ }^{6}$ Although the 1,3 -dipolar cycloaddition reactions of nitrile oxides with $\alpha . \beta$-unsaturated ketones generally afforded a mixture of two regioisomers, the cycloadditions of aryl nitrile oxides with 2-cyclopenten-1one could afford predominantly the corresponding 3-aryltet-rahydrocyclopent[d]isoxazol-4-ones (1).?

The reductions of 3-alkyl-3a,5,6,6a-tetrahydro-4H-cyclo-penta[d]isoxazol-4-ones by NaBH_{4} were reported ${ }^{8}$ to afford only 3 a, 4 -cis isomers in quantitative yields. We have also found that the reduction of 3-methyl-3a,5,6,6a-tetrahydro-4H-cyclopenta[d]isoxazol-4-one showed a similar diastereoselectivity and gave a 9:1 mixture of 3a,4-cis and 3a,4-trons isomer. However, there have been few studies on the reduction and Grignard reaction of carbonyl group in 1. ${ }^{168}$ Herein we wish to report the diastereoselective reduction and Grignard reaction of 3-aryltetrahydrocyclopent-1,2-isoxazol-4ones (1).

When the carbonyl group of 3-aryItetrahydrocyclopent[d] isoxazol-4-ones (1) were reduced to the corresponding 3-aryltetrahydrocyclopent-1,2-isoxazol-4-ols (2) by sodium bo-rohydride in methanol, we isolated only 3a.4-cis-3a,6a-cis-isomers in excellent yields without any trace of 3a,4-trans-3a,6a-cis-isomers. This excellent diastereoselectivity may result from the attack of reducing agent to the convex side of the cis-fused structure. Interestingly, the reduction of

Scheme I

3a,7a-cis-3-phenyl-3a,4,5,6,7,7a-hexahydro-1,2-benzisoxol7 -one, a 6 -membered ring-fused isoxazolinone by NaBH_{4} showed less diastereoselectivity and afforded a $2: 1$ mixture of 3a,4-cis and 3a,4-trans isomers. ${ }^{9}$

The relative stereochemistry of three stereocenters of $2 \mathbf{a}$ ($\mathrm{Ar}=$ phenyl) were confirmed by NOE experiments in ${ }^{1} \mathrm{H}$ NMR. Irradiation of $\mathrm{H}-3 \mathrm{a}$ at 4.07 ppm showed 2.36% and 2.12% enhencement of signals for $\mathrm{H}-4$ at 4.55 ppm and $\mathrm{H}-6 \mathrm{a}$ at 5.21 ppm , respectively.

Grignard reactions of methylmagnesium chloride or ethylmagnesium bromide with 1 were examined in THF at $0^{\circ} \mathrm{C}$. and we observed the reactions proceeded very slow and afforded 3 in low yields with the complicated by-products probably due to the abstraction of acidic protons at $\mathrm{C}-3 \mathrm{a}$ or C-5 position. When Imamoto's method ${ }^{10}$ was applied in this Grignard reaction, we found that the reaction was completed within 3 h at $-78^{\circ} \mathrm{C}$ in excellent yield. All of the products obtained from the Grignard reactions of 1 were only $3 \mathrm{a}, 4-$ cis-3a,6a-cis-isomers as expected, which were confirmed by

Table 1. Reduction and Grignard Reaction of 3-ary letrahy dro-cyclopent-1.2-isoxayol-4-ones (1)

Entry	Ar	Reagent	I'roduct (Yield)"
1		NaBH_{4}	2a(97\%)
2		$\mathrm{NaH3H}_{4}$	2b (89\%)
3		NaBH_{4}	2c (87\%)
4		$\mathrm{NaH3H}_{4}$	2d (88\%)
5		NaHIH_{4}	2e(89\%)
6		$\mathrm{CH}_{3} \mathrm{MgCl}$	$\mathbf{3 a}$ (96\%)
7		$\mathrm{Cl}_{3} \mathrm{MgCl}$	3b (93\%)
8		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$	3c (96\%)
9		$\mathrm{CH}_{3} \mathrm{ClH}_{2} \mathrm{MgHr}$	3d (91\%)

[^0]

2

Scheme 2

NOE experiments in 'H NMR. In case of $\mathbf{3 a}$ (Ar ${ }^{-}$phenyl), irradiation of $\mathrm{H}-3 \mathrm{a}$ at 3.77 ppm showed 4.81% and 4.63% of enhencement of signals for $\mathrm{CH}_{3}-4$ at 1.48 ppm and $\mathrm{H}-6 \mathrm{a}$ at 5.22 ppm , respectively. The results are summarized in Scheme 1 and Table I.
The catalytic hydrogenation ${ }^{3}$ with Raney Ni of $3 \mathrm{a}, 4$-cis-3a,6a-cis-3-phenyl-3a,5,6,6a-tetrahydro-4H-cycenta[d]isox-azol-4-ol (2a) provided the corresponding 2-benzoyl-1,3cyclopentanediol 4 in good yields as shown in Scheme 2. For the structure of 1,3-diol 4 has a symmetic plane, proton peaks of $\mathrm{H}-1$ and $\mathrm{H}-3$ appeared at same position (4.72-4.69 ppm) in ${ }^{1} \mathrm{H}$ NMR spectrum and only eight carbon peaks were found in ${ }^{13} \mathrm{C}$ NMR spectrum. The irradiation of $\mathrm{H}-2$ at 3.41 ppm showed 8.25% enhencement of signals for $\mathrm{H}-\mathrm{I}$ and $\mathrm{H}-2$ at 4.71 ppm in ${ }^{1} \mathrm{H}$ NMR of $4\left(\mathrm{Ar}^{-} \mathrm{Ph}\right)$. We could confirm the relative stereochemistry of three stereocenters of 4 by theses NMR experiments.

In conclusion, we could prepare the highly functionalized cyclopentanes via diastereoselective reductions or Grignard reactions of 3 -aryl-3a,5,6,6a-tetrahydro-4 H -cyclopenta[d] iso-xazol-4-ones prepared from the 1,3-dipolar cycloadditions of nitrile oxides with 2 -cyclopenten-1-one, followed by the re- ductive cleavage of the isoxazoline ring.

Experimental Section

'H NMR spectra, ${ }^{13} \mathrm{C}$ NMR spectra, and spectra of NOE experiments were recorded on Bruker AM-300MHz using TMS as a internal standard. FTIR spectra were taken with Digilab FTs-80 or Digilab FTs-165 spectrometer. IIRMS spectra were obtained by Jeol JMX-DX 303 mass spectrometer. Flash column chromatography was catried out on silica gel Merck ($230-400$ mesh). Nll chemicals and solvents except THF were directly used from commercial sources. THF was dried over potassium metal before use.

General procedure for the reduction of 1 with NaBH_{4}. To a solution of 3-aryl-3a,5,6,6a-1ctrahydro-4I[-cyclopentald isoxazol-4-one (3 mmol) in 95% methanol (20 mL) was added $\mathrm{NaBI}_{4}\left(6 \mathrm{mmol}, 2\right.$ equiv) at $0^{\circ} \mathrm{C}$ in small portions. Alter stirred for 30 min , the reaction mixture was poured into cold water and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated by a rotary evaporator to alford pure 3a.4-cis-3a,6a-cis-3-aryl-3a,5,6,6a-tetrahydro-4H-cyclopenta|d|isox-azol-4-ol (2). The yields and spectroscopic data are as follows.

2a: Yield: 97.4\%. 'IJ NMR (CDCl_{3}) δ 7.79-7.69 (m, 2H), 7.44-7.32 (m, 311), 5.26-5.17 (m, 1H), 4.59-4.52 (m, 1HI),
4.07 (dd, $J=6.96,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ 1.93 (m, 2H), 1.90-1.80 (m, 1H); ${ }^{1 .} \mathrm{C}$ NMR (CDCl), 156.80, 130.02, 129.74, 128.61, 126.88, 88.08, 75.38, 56.71, 33.80, 30.66; FTIR (cm^{-1}) 3364.42, 2935.33, 1444.6I, 1361.87, 892.05, 759.19; MS (20eV) m/z (rel intensity) 204 $\left(\mathrm{M}^{1}+\mathrm{I}, 8.3\right), 203\left(\mathrm{M}^{\prime}, 13.3\right), 175(8.7), 159$ (5.7), 146 (100.0), 118 (7.2); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{NO}_{2} 203.0946$, found 203.0946 .

2b: Yield: 88.7%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.63$ (d, $J=8.12$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 2 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.59-$ $4.45(\mathrm{~m}, 1 \mathrm{H}), 4.06$ (dd, $\left.J^{-7.12, ~} 2.72 \mathrm{~Hz}, 1 \mathrm{H}\right) .2 .35(\mathrm{~s}, 3 \mathrm{H})$, 2.23-2.12 (m, 1H), 2.06-1.91 (m, 2H), 1.83-1.68 (m, 1H); ${ }^{19} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.22,129.34,127.62,126.8 \mathrm{I}$, 125.17, 85.72, 75.44, 60.24, 35.46, 27.75, 21.42; FTIR $\left(\mathrm{cm}^{-1}\right) 3396.95,2958.32,1359.42,1043.4,904.89 .816 .28$; MS (20 eV) $m / 5$ (rel intensity) 218 (M-I, 2.2). 217 (M , 13.7). 216 (2.2), 161 (13.3), 160 (100.0), 159 (87.1); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} 217.1102$, found 217.1101 .

2c: Yield: 86.8%. 'H NMR ($\left.\mathrm{CDCl}_{5}\right) \delta 7.70(\mathrm{~d} . J=8.72 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.17(\mathrm{~m}, \mathrm{IH}), 4.61-4.50$ $(\mathrm{m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=7.35,2.22 \mathrm{~Hz}, \mathrm{IH}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H})$. 2.09-1.90 (m, 2H), 1.83-1.69 (m, 1H); ${ }^{19} \mathrm{C}$ NMR (CDCl_{3}), 155.41, 129.10, I28.87, I28.7I, 128.26, 88.39, 75.61, 56.41. 33.88, 30.63; FTIR (cm^{-1}) $3400.89,2893.34,1360.5 \mathrm{I}$, 1225.68. 1086.42, 1043.91, 908.64, 827.33; MS (20eV) m/z (rel intensity) 237 (M, 14.4), 182 (36.9), 181 (37.3), 180 (100.0), 179 (70.1): HRMS calcd for $\mathrm{C}_{1_{2}} \mathrm{H}_{1_{2}} \mathrm{NO}_{2} \mathrm{Cl}$ 237.0556, found 237.0562 .

2d: Yield: 87.0%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.96-7.80(\mathrm{~m}, ~ \mathrm{IH})$, 7.40-7.28 (m, 1H), 7.20-7.03 (m, 2H), 5.23-5.13 (m, 1H), 4.59-4.48 (m, 1H), 4.18-4.16 (m, IH), 2.25-2.11 (m, 1H), 2.04-1.86 (m, 2H), 1.80-1.68 (m, 1H) ; ${ }^{13} \mathrm{C}$ NMR (CDCl C_{3}), $152.79,131.28,131.21,129.80,128.97,128.95,124.56$. $87.96,75.86,57.59,32.89,30.74 ;$ FTlR $\left(\mathrm{cm}^{-1}\right) 3443.96$. $2958.27,1591.97,1495.37,1348.67,1229.48,1098.22$, 928.55; MS (20 eV) $m /=$ (rel intensity) 222 ($\mathrm{M}+1,3.2$). 221 $\left(\mathrm{M}^{\prime}, 16.9\right), 220(3.0), 165(10.8), 164(91.4), 164$ (100.0): HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~F} 221.0852$, found 221.0854 .

2e: Yield: 84.4%. 'HINMR (CDClis) $\delta 7.57$ (d. $J=8.38 \mathrm{H} \angle$, $111), 7.40\left(\mathrm{~d}, J=2.62 \mathrm{Il} _, 11 \mathrm{I}\right), 7.25(\mathrm{dd}, J=2.62 .8 .38 \mathrm{l} \mathrm{L}$, 111), 5.23-5.16 (m. 1HI), 4.47-4.41 (m, 2I1), 2.19-1.80 (m, 41I); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.20,135.50,132.85,131.76$, $129.76,129.99,128.99,127.24,87.71,57.28,32.53,30.73$; FTIR $\left(\mathrm{cm}^{-1}\right) 3420.63,2928.79,1580.57,1479.99,1345.06$, 887.25; MS (20cV) $m / 5$ (rel intensity) 272 (M $+1,2.4$), 271 ($\mathrm{M}^{\prime}, 4.4$), $214(100.0), 213(46.8) .159(10.6)$; I 2 RMS calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}-\mathrm{Cl}_{2} 271.0166$, found 271.0158 .

General procedure for the reaction of 1 with Grignard reagents. To a solution of 3-aryl-3a,5,6,6a-tetrahydro-4I[-cyclopenta[d]isoxazol-4-one (3 mmol) in anhydrous TliF $(20 \mathrm{ml})$ was added anhydrous $\mathrm{CeCl}_{3}(3.3 \mathrm{mmol})$ at rl. Alter stitred for 1 h at rt , the reaction mixture was cooled $10-78^{\circ} \mathrm{C}$ and alkyl Grignard reagent (3.3 mmol) was added to the reaction mixture. It was stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$ and then poured into the saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was extracted with ethyl acetate, washed with brine, dried over MgSO_{4}, and concentrated by a rotary evaporator to
afford purc 3a.4-cis-3a.6a-cis-4-alkyl-3-aryl-3a.5.6.6a-tct-raḩdro- 4 H -cyclentald \mid is-oxatol-4-ol (3). The yields and spectroscopic data are as follows.

3a: Yield: 95.4%. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.75-7.70(\mathrm{~m} .2 \mathrm{H})$. $7.39-7.38(\mathrm{~m} .3 \mathrm{H}) .5 .28-5.17(\mathrm{~m} .1 \mathrm{H}) .3 .77(\mathrm{~d} . / 8.90 \mathrm{~Hz}$. 1H). 2.35-1.85 (m. 4H). 1.48 (s. 1H): ${ }^{1.3} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$. 157.32. 130.21. 129.72. 128.60. 127.25. 88.72.81.87. 61.62. 39.78. 30.68. 28.88: FTIR (cm^{-1}) 3497.01. 2965.69. 1445.74. 1353.16. 1189.53. 916.01: HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ 217.1102. found 217.1103.

3b: Yield: 93.1%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.60$ (d. $J 8.00$ $\mathrm{H} \not . .2 \mathrm{H}) .7 .19(\mathrm{~d} . f 8.02 \mathrm{~Hz} .2 \mathrm{H}) .5 .22-5.15(\mathrm{~m} .1 \mathrm{H}) .3 .74$ (d. $.58 .91 \mathrm{H} \not .1 \mathrm{H}) .2 .37(\mathrm{~s} .3 \mathrm{H}) .2 .37-1.56(\mathrm{~m} .4 \mathrm{H}) .1 .47(\mathrm{~s}$. 3H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta$ 157.22. 129.29. 129.06. 127.29. 127.16. 88.52. 81.78. 61.69. 39.77. 30.62. 28.85. 21.35: FTIR (cm^{-1}) 3498.51, 2964.63, 1444.24. 1350.76. 1185.16. 915.44: HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} 231.1261$. found 231.1263.

3c: Yicld: 96.8%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.70-7.67(\mathrm{~m} .2 \mathrm{H})$. $7.37-7.35(\mathrm{~m} .3 \mathrm{H}) .5 .20-5.15(\mathrm{~m} .1 \mathrm{H}) .3 .78(\mathrm{~d} . f 9.32 \mathrm{H} \%$ 1H). 2.18-2.13 (m. 1H). 1.98-1.72 (m. 4H). 1.67-1.59 (m. 1H). $1.22(\mathrm{~s} .1 \mathrm{H}) .1 .04(\mathrm{l} . J 7.38 \mathrm{H} \neq 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.32 .130 .41$. 129.66. 128.60. 127.16. 88.48. 84.51. 60.26. 36.27. 33.60. 30.52. 8.24: FTIR (cm^{-1}) 3510.57. 2972,47. 1442.53. 1351,36. 1183.84. 909.08: HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17}-\mathrm{NO}_{2} 231.1259$. found 231.1269.

3d: Yicld: $90.2 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58$ (d. J 8.11 $\mathrm{H} \not .2 \mathrm{H}) .7 .18$ (d. $/ 8.11 \mathrm{H} \not .2 \mathrm{H}) .5 .19-5.12$ (m. 1 H). 3.76 (d. $J \quad 8.90 \mathrm{H} \not .1 \mathrm{H}) .2 .35(\mathrm{~s} .3 \mathrm{H}) .2 .16-1.57(\mathrm{~m} .6 \mathrm{H}) .1 .02(\mathrm{t}$. $J 7.43 \mathrm{H} \ldots . .3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 157.22. 129.26. 128.97. 127.47. 127,04. 88,24, 84,39. 60,31, 36,19, 33.55. 30.43. 21.31. 8.20. FTIR $\left(\mathrm{cm}^{-1}\right) 3517.36,2970.39$. 1448.73. 1349.18. 1182.52. 908.81: HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ $245,1+38$. Cound $245,1+40$.

1,2-cis-2,3-cis-2-Benzoyl-1,3-cyclopentanediol (4a). To a solution of 2a (0.406 g .2 mmol) in $5 / \mathrm{l} \mathrm{methanol} /$ water (15 ml) was added boric acid (0.245 g .4 mmol) and a spatula tip (estimated $10-20 \mathrm{mg}$) of $\mathrm{W}-2$ Raney Ni . The reaction proceeded under H_{2} atmosphere by means of a balloon attached to three-way stopeock. The mixture was stirred vigorously for 3 h at rl and fillered through Celite into a scparatory funnel containing water and $\mathrm{CH}_{2} \mathrm{Cl}_{3}$. After separation. the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2$ more times and the combined organic layers were washed with brine. dried over MgSO_{4}. and concentrated by a rotary cyaporator to give an oily residuc. It was purified by silica gel columun chromatography (EtOAc/n-hexanc. 4/I) to afford 2-benzoyl-I.3-cyclopentancdiol ($0.300 \mathrm{~g} .72 .9 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.99-7.95(\mathrm{~m} .2 \mathrm{H}) .7 .64-7.45(\mathrm{~m}$. $3 \mathrm{H}) .4 .72-4.69(\mathrm{~m} .2 \mathrm{H}) .3 .44-3.39(\mathrm{~m} .1 \mathrm{H}) .2 .07(\mathrm{~s} .4 \mathrm{H}):{ }^{15} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.58$. 136.67. 133.81. 128.82. 128.21. 75.34. 56.61. 33.97: FTIR $\left(\mathrm{cm}^{-1}\right) 3467.97 .2957 .46 .1664 .70$. 149.20. 1350.35. 1221.26. 1044.74: HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} 206.0951$. found 206,0951 .

1,2-cis-2,3-cis-2-Toluyl-1,3-cyclopentanediol (4b). 4b was made by the reductive cleavage from $\mathbf{2 b}$ according to the method described above.

Yield: $74.0 \%{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.95$ (d. $J 7.12 \mathrm{H} \%$ $2 \mathrm{H}) .7 .25$ (d. $J 7.12 \mathrm{H} \approx .2 \mathrm{H}) .4 .54-4.46(\mathrm{~m} .2 \mathrm{H}) .3 .81-3.77$ (m. 1H). $2.39(\mathrm{~s} .3 \mathrm{H}), 2.13-1.83(\mathrm{~m} .4 \mathrm{H}):{ }^{17} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ ס 199.69. 129.45. 129.38. 128.93. 128.76. 75.63. 64.09. 33.05. 21.66: FTIR $\left(\mathrm{cm}^{-1}\right) 3417.24$. 2961.26. 1667.12. 1446.03. 1349.31. 1184.38. 1014.08: HRMS caled for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} 220.1099$, found 220.1101.

Acknowledgement. Financial supports from the Ministry of Science and Technology. Korea is gratefully acknowlcdgcd.

References

1. (a) Caramella, P.: Grunanger P. 1,3-Dipolar ('ycloaddition (hemisty: Padwa, A., Fd: John Wiley \& Sons: New York, 1984: Vol. I, pp 291, (b) Baraldi, P G.: Barce, S : Benetti, S :: Pollini, G. P. Polo, Г..: Simeni, D. J. Chem. Soc., Chem. Commmo. 1986, 757. (c) Baraldi, P' G.: Barco, S: Benetti, S.: Ferretti, V.: Pollini, G. P': Polo, E.: Lanirato, V. Tetrahedron 1989, 45, 1517. (d) Hassner, A : Murthy, K. S. K. Tetrahedron Letl. 1986, 27, 1407. (e) Ilassner, A.: Murthy, K. S. K.: P'adwa, A.: Bullock, W. II.: Stull, P. D. J. Org. Chem. 1988, 53, 5063. (f) Riss, B.: Muckensturm, B. Tetrohedron 1989, 45, 2591. (g) Ihara, M: Tokunaka, Y: Fukumoto, K. J. Org. Chem 1990, 55 , 4497. (h) Curan. D. P.: 7hang. J. J. (hem. Soc, Perkin Trans. / 1991, 2613. (i) Kanemasa, S: Nishiuchi, M: Kamimura, A.: Hori K. J. Am. (hem. Soc. 1994, //6, 2324. (i) Kim. H. R.: Kim, K. M.: Kim, J. N.: Ryu. Г. K. Svih. Commm. 1994, 2t, 1107.
2. (a) Curran. D. P. Advances in Cychoaktition: Curran. D. P.. Ed.: JAL: Greenwich 1988: Vol 1, p 129. (b) Torssell. K. B. G. Ninile Oxides, Nibones, and Ximonates in Onganic Symhesis: VCHI: New York, 1988: p 1. (c) Padwa. A. In the 1,3-1)ipotar Cycloaddition (Chemistry Taylor. E. C.: Weissberger. A. Eds: Iohn Wiley \& Sons: New York, 1984. Vol. I, p 364
3. Curan, D. P. . Am Chem. Soc. 1983, $105,5826$.
4. Tacger. V.: Bub. V. Schwab, W. Tetrohedron Lett. 1978, 3133
5. I, amaiah. M. Synthesis 1984,529
6. Kurth, M. J.: Rodriguez, M. J. J. Im. Chem. Soc. 1987. 109.7577.
7. Bianchi, G.: De Micheli, C.: Gandolti. R.: Grunanger, P.: Finzi, P. V.: De Pava, O. V. J. Chem. Soc.. Pemtin I 1973. 1148.
8. Lakhvich, F. A.: Khripach, V. A.: IPrko, A. N.: Antonevich, I. P.: Yankova, T. V: Koroleva, F. V.: Akhrem, A. A. Khim (Geterotsikl. Soden 1988. 7: 972
9. The ratio of the isomers was conlimed by ${ }^{1} \mathrm{H} N M R$.
10. Imamoto, T : Takiyama, N : Nakamura, K : Hatajima, T : Kamiva, Y.J. Am. (hem. Soc. 1989: I/H: 4392.

[^0]: "Isolated yields.

