DOI QR코드

DOI QR Code

Temporal Evolution and Ablation Mechanism of Laser-induced Graphite Plume at 355 nm

  • Published : 1999.12.20

Abstract

Expansion dynamics of C$^{+}$ ions ejected from 355-nm laser ablation of graphite target in vacuum has been investigated by pulsed-field time-of-flight (TOF) mass spectrometry. A strong nonlinear dependence of the amount of desorbed C$^{+}$ ions on laser fluence is interpreted by the mechanism that C$^{+}$ ions are produced directly from the graphite via conversion of the multiphoton energy into thermal energy. The temporal evolution of C$^{+}$ ions was measured by varying the delay time of the ion repelling pulse with respect to the laser irradiation, which provides significant information on the ablated plume characterization. The TOF distributions of ablated ions showed a bimodal shape and could be fitted by shifted Maxwell-Boltzmann distributions. The velocity of the fast component increases with the delay time, whereas the slow component (< 500 m/s) exhibits a constant velocity. Also studied were the effects of the laser fluence on the energetics of C$^{+}$ ions.

Keywords

References

  1. Nature v.318 Kroto, H. W.;Heath, R. J.;Brien, S. C.;Curl, R. F.;Smalley, R. E.
  2. Nature v.363 Iijima, S.;Ichihashi, T.
  3. Science v.273 Lowndes, D. H.;Geohegan, D. B.;Puretzky, A. A.;Norton, D. P.;Rouleau, C. M.
  4. Jpn. J. Appl. Phys. v.34 Tasaka, Y.;Tanaka, M.;Usami, S.
  5. Appl. Phys. Lett. v.55 Geohegan, D. B.;Mashburn, N. D.
  6. Jpn. J. Appl. Phys. v.32 Kunudumi, W. K. A.;Nakayama, Y.;Nakata, Y.;Okada, T.;Maeda, M.
  7. Appl. Phys. Lett. v.60 Okada, T.;Shibamaru, N.;Nakayama, Y.;Nakata, Y.;Maeda, M.
  8. Appl. Phys. Lett. v.67 Geohegan, D. B.;Puretzky, A. A.
  9. J. Chem. Phys. v.92 Creasy, W. R.;Brenna, J. T.
  10. Bull. Korean Chem. Soc. v.19 Choi, Y. K.;Im, H.-S.;Jung, K.-W.
  11. Appl. Surf. Sci. v.150 Choi, Y. K.;Im, H. S.;Jung, K. W.
  12. Int. J. Mass Spectrom. v.189 Choi, Y. K.;Im, H. S.;Jung, K. W.
  13. J. Chem. Soc., Faraday Soc. v.89 Gaumet, J. J.;Wakisaka, A.;Shimizu, Y.;Tamori, Y.
  14. J. Chem. Phys. v.81 Rohlfing, E. A.;Cox, D. M.;Kaldor, A.
  15. J. Chem. Phys. v.98 Ramanathan, R.;Zimmerman, J. A.;Eyler, J. R.
  16. J. Chem. Phys. v.92 Bach, S. B.;Eyler, J. R.
  17. J. Phys. Chem. v.99 Sowa-Resat, M. B.;Hintz, P. A.;Anderson, S. L.
  18. J. Chem. Phys. v.87 Raghavachari, R.; Binkley, J. S.
  19. Appl. Phys. Lett. v.59 Gupta, A.;Baren, B.;Casey, K. G.;Husley, B. W.;Kelly, R.
  20. Rev. Sci. Instrum. v.26 Wiley, W. C.;McLaren, I. H.
  21. Appl. Phys. Lett. v.60 Geohegan, D. B.
  22. Laser Ablation of Electronic Materials: Basic Mechanisms and Applications Geohegan, D. B.;Fogarassy, E.(Ed.);Lazare, S.(Ed.)
  23. Appl. Phys. B v.53 Kelly, R.;Braren, B.
  24. J. Chem. Phys. v.92 Kelly, R.
  25. Appl. Phys. Lett. v.53 Zheng, J. P.;Huang, Z. Q.;Shaw, D. T.;Kwok, H. S.
  26. Adv. Chem. Phys. v.10 Anerson, J. B.;Andres, R. P.;Fenn, J. B.