Characterization of Superoxide Dismutase in Lactococcus lactis

  • Chang, Woo-Suk (Department of Biological Engineering, lnha University) ;
  • So, Jae-Seong (Department of Biological Engineering, lnha University)
  • Published : 1999.12.01

Abstract

The superoxide dismutase (SOD) in Lactococcus lactis was measured quantitatively and qualitatively under various culture conditions. The L. lactis SOD was induced by oxidative stress. As the concentration of paraquat to produce superoxide radicals increased, the growth of L. lactis decreased with concomitant increase of SOD activity. The SOD activity was found to be growth-phase dependent: when aerobically grown cells entered to the stationary phase, the activity increased gradually until the late stationary phase. From inhibition studies, L. lactis SOD was found to be insensitive to KCN and $H_2O_2$ which are known to inhibit Cu/ZnSOD and FeSOD, respectively. Moreover, as the concentration of manganese in the medium increased, the activity of SOD also increased. These data strongly suggested that L. lactis possessed a single manganese-containing SOD (MnSOD). Finally, a putative sod gene fragment of 510 bp was identified in L. lactis using a polymerase chain reaction (PCR) with degenerate primers designed from the deduced DNA sequences of known SOD genes.

Keywords

References

  1. J. Bacteriol. v.145 Manganese and defenses against oxygen toxicity in Lactobacillus plantarum Archiblad, F. S.;I. Fridovich
  2. J. Bacteriol. v.146 Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria Archiblad, F. S.;I. Fridovich
  3. J. Biol. Chem. v.250 Superoxide dismutase from a blue-green alga, Plectonema boryanum Asada, K.;K. Yoshikawa;M. Takahashi;Y. Maeda;K. Emanji
  4. Anal. Biochem. v.44 Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels Beauchamp, C.;I. Fridovich
  5. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding Bradford, M. M.
  6. J. Bacteriol. v.134 Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms Britton, L.;D. P. Malinowski;I. Fridovich
  7. Appl. Environ. Microbiol. v.63 Characterization of superoxide dismutase in Streptococcus thermophilus Chang, S. K.;H. M. Hassan
  8. J. Microbiol. Biotechnol. v.8 False positive SOD activity of Bifidobacterium spp. grown in MRS medium Chang, W.-S.;J.-S. So
  9. FEMS Microbiol. Rev. v.46 Responses of lactic acid bacteria to oxygen Condon, S.
  10. FEMS Microbiol. Lett. v.132 Heavy metal effects on Proteus mirabilis superoxide dismutase production Eickhoff, J.;E. P. J. Valtos;E. C. Niederhoffer
  11. Microbiol. Rev. v.55 Oxidative stress responses in Escherichia coli and Salmonella typhimurium Farr, S. B.;T. Kogoma
  12. Annu. Rev. Pharmacol. Toxicol. v.23 Superoxide radical: An endogenous toxicant Fridovich, I.
  13. Appl. Environ. Microbiol. v.178 Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal Gibson, C.;M. G. Caparon
  14. Arch. Microbiol. v.125 Oxygen utilization by Lactobacillus plantarum Gotz, F.;E. F. Elstner;B. Sedewitz;E. Lengfelder
  15. Adv. Genet. v.26 Microbial superoxide dismutases Hassan, H. M.
  16. Kor. J. Appl. Microbiol. Biotechnol. v.23 A micromethod for rapid and simple isolation of genomic DNA from scale culture of Bifidobacterium Jeakal, S.;H.-K. Park;J.-E. Song;T.-R. Heo;J.-S. So
  17. Proc. Natl. Acad. Sci. USA v.87 Cloned manganese superoxide dismutase reduces oxidative stress in Escherichia coli and Anacystis nidulans Margaret, Y. G.;B. R. Glick;J. E. Thompson
  18. J. Biol. Chem. v.261 A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor Martin, M. E.;B. R. Byers;M. O. J. Olson;M. L. Salin;J. E. L. Arceneaux;C. Tolbert
  19. J. Biol. Chem. v.244 Superoxide dismutase: An enzymatic function for erythrocuperin (hemocuperin) McCord, J. M.;I. Fridovich
  20. J. Bacteriol. v.176 Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis Nakayama, K.
  21. FEMS Microbiol. Lett. v.131 Characterization of superoxide dismutase genes from gram-positive bacteria by polymerase chain reaction using degenerate primers Poyart, C.;P. Berche;C. P. Trieu
  22. J. Bacteriol. v.160 Induction of superoxide dismutase in Escherichia coli by manganese and iron Pugh, S. Y. R.;J. L. Diguiseppi;I. Fridovich
  23. J. Bacteriol. v.177 Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene Sanders, J. W.;K. J. Leenhouts;J. Kok
  24. J. Bacteriol. v.177 Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobactercrescentus Schnell, S.;H. M. Steinman
  25. J. Mol. Evol. v.34 A comparison of evolutionary rates of the two major kinds of superoxide dismutase Smith, M. W.;R. F. Doolittle
  26. J. Bacteriol. v.178 Periplasmic copperzinc superoxide dismutase of Legionella pneumophila: Role in stationary-phase survival St. John, G.;H. M. Steinman
  27. Appl. Microbiol. v.29 Improved medium for lactic streptococci and their bateriophages Terzaghi, B. E.;W. E. Sandine
  28. Appl. Microbiol. v.29 Improved medium for lactic streptococci and their bateriophages Terzaghi,B.E.;W.E.Sandine