On Solutions of Representots In Reproducing Kernel Space W$^2_2$(R)

  • Published : 1999.06.01

Abstract

In this article, we give a historical referencing overview and compressed illuminating procedure of deriving the repersentors R$_y$(x) in Reproducing Kernel space W$^2_2$(R), being needed to find the solutions of integral equations, which construct the wavelets in L$^2$(1R).

Keywords

References

  1. An Introduction to Wavelets Chui, C.K.
  2. CAT Report 219 General Framework of Compactly Supported Splined and Wavelets Chui, C.K.;Wang, J.Z.
  3. C.R. Acad. Sci. pairs, t. 312, Series Ⅰ Remarques sur L'analyse de Fourier a fenetre Coifman, R.;Meyer, Y.
  4. Number. Math. J. Chinese Univ. v.5 no.4 The exact solution of the second kind Volterra equation Cui, M.
  5. Fourier Transforms and Wavelet Transforms Choi, M.;Lee, D.M.
  6. SIAM. J. Math. Anal. v.22 Two-Scale Difference Equations Ⅰ, Existence and global regularity of Solutions Daubechies, I.;Lagarias, J.C.
  7. Ten Lectures on Wavelets Daubechies, I.
  8. J. Math. Phys. v.26 Transforms associated to square integrable group representations Ⅰ Grossmann, A.;Morlet, J.
  9. Korean Annales of Math. v.15 A Filtering Formula on Wavelets Lee, J.G.;Lee, D.M.
  10. Rev. Mat. Iberoamericana v.2 Ondellettes et bases hilbertiennes Lemarie, P.G.;Meyer, Y.
  11. Trans. Amer. Math. Soc. v.315 Multiresolution approximations and wavelet orthonormal basis of $L^2({\mathbb}{R})$ Mallat, S.
  12. Seminaraire Bourbaki v.663 Principle d'incertitude, bases Hilbertiennes et algebres d'operateurs Y. Meyer
  13. Linear Operators in Hilbert spaces Weidmann, J.
  14. Historia Mathematica v.11 no.2 A Historical Remark on Nuclearity S.H. Yoon;J.G. Lee;D.M. Lee