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Robust On-Line Fault
Detection Method for Boiler Systems
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1. Introduction changes may be found by global search; From the
There exists a vast amount of literature on the on-line viewpoint, the changes are assumed to be
topic of fault detection and diagnosis. For example, detected one after another. The needs in real-time
fault detection method based on parameter estimation applications have stimulated the development of an
are described in (Geiger, 1984; Isermann, 1986; Kita— on-line fault detection method.
mura 1989, Zhang et al, 1992). A very general The fault detection method in the current paper
approach is presented in (Basseville et al, 1986) would be described via a computer simulation using
which considers a general class of recursive para— MATILAB to a practical boiler-turbine system. In
meter estimation procedures. There are also many boiler-turbine systems, models can be used to relate
other alternative formulations — see for example the various control input variables to various outputs. For
extensive literature provided in the survey papers by example, changes in inputs, such as fuel flow and
Willsky(1976), Isermann(1984), Basseville(1988) and valve geometry, can be related to changes in the
Frank(1987, 1988). These methods have been succe- outputs typically, drum water level and pressures and
ssfully applied in a variety of practical cases. temperatures throughout the steam wall. Typical
The purpose of the cwrrent paper is to focus faults that can occur in boiler systems include fuel
attention on the problem of modelling error. Many nozzle clogging, pump fault, leaking, coking, valve
authors (e.g, Basseville and Benveniste, 1983; Kosut fault, turbine blade fault, sensor fault, actuator fault
and Walker, 1984; Basseville et al, 1986; Basseville, and controller fault. Clearly accurate detection and
1988; Lou et al., 1986) refer to the importance of this diagnosis of these faults play an important role in
problem, and recentlyKwon et al. (1994) have propos— minimizing the risk of catastrophic failures or on
ed a robust fault detection method importance of this reducing maintenance costs (Yoon, 1993).
problem, and recently Kwon et al (1994) have The key ingredient in an analytical redundancy
proposed a robust fault detection method. Besides the approach is the mathematical model used to inter-
robustness issue, the issue of compu- tational relate the measured variables. A typical model for a
complexity should be considered in the fault detection drum-type boiler can have at most fourteen inputs
problem since it is closely related with the rapid and outputs with fourteen or more state variables. In
response to occurrence of a fault. In off-line pro- addition, a non-linear model is usually required to
blems the fault detection is based on observations describe the complex mass, energy and thermody-—
over the complete time interval of interest, and in namic relationships over the full power range of a
on-line problems the detection decision must be made boiler system. Thus, to gain insight into the fault
rapidly at each time moment based on past obser- detection problem it is generally desirable to simplify
vations. From the off-line point of view, multiple the equations to something more manageable. Typi—
cally, linear models of order two or three are
A4QAF ¢ 1997, 11. 10, 3L YA} ¢ 1998, 9. 2. employed containing one or two inputs and outputs.
RO, AUS : sty w Ar|ESH The structure and the number of parameters to be
¥ LG Ix LCD 974 used in these simplified models may depend on the
*E =EL 199649% 3tdgne] ] dywl A 9 operation conditions, for example, the most suitable

o o]0 APt model at part power may differ from that required at
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high power settings.

This paper is organized as follows: In Section 2,
the model mismatch problem due to undermodelling
and linearization error is briefly described and the
nonrecursive and recursive parameter estimation pro-
cedures are summarized. In Section 3, off-line and
on-line fault detection methods are proposed. In
Section 4, the fault detection methods proposed are
applied to a boiler-turbine system to illustrate the
effective performance of the proposed methods. The
conclusions are summarized in Section 5.

II. System description and parameter estimation
1. System description

The basic premise of this paper is that all mathe-
matical models are only approximate description of
real systems. As alluded previously, the major sources
of modelling errors are measurement noise, under-
modelling and linearization errors. Thus the model
mismatch can be represented by the following system
description based on a Taylor series expansion of
input-output relationship:

Wk = GlgVulk) + Gola™ ) ulk)
+ Guala™ ") ul B sign(u( k) + v(k) ,

1)

where ¢! denotes the backward shift operator, G is
the nominal model, G, and G,, denote the mismat—
ched models due to undermodelling and linearization
error, respectively, sign( -) is the sign function, and
v is the measurement noise. This system description
is depicted by Fig. 1.

u?sign(u)

Jo .
7l g

Measurement
noise v

u
Input

|

G

Fig. 1. System description.

The expansion given in (1) can be justified either
in terms of linearization about an operation point or
via a description of a nonlinear system in which the
nonlinearity is represented as a static element on the
input side as in the Hammerstein model (Ljung,
1987). 1t is here assumed that G, G4 and G,, are
stable and causal and that » is zero-mean white
noise with variance o,%. The nominal model is taken

to be:

B(z7', 6, Np)

F(z ' No) @

Gz ', 9) =
where F(z ',N;) is a predetermined denominator

and
B(Z_I,H,NB) = blz_l + b22_2 + e+ bNyZ_

Ny

F(z7UNp) =1+ fiz7 '+ frz 2+ o + fyz
g = [bl bz o bNB] T.

The denominator F(z',Nr) can be determined
from a priori information about the system, e.g,
approximate values of dominant poles or by some
prior estimation experiments on the system. Note that
any linear stable system can be always approximated
by the nominal model (1) by adjusting the orders Ng

and Np. Basically, errors in the denominator poly-

nomial are corrected by adjustments to the numerator
polynomial (Salgado, 1989, Makila 1990).
2. Non-recursive parameter estimation

Using the system description (1), the system output
has the following form:

y(B) = B(g ', 6,Ng)up(®) + (k) , 3)

_ 1

F(q_l,NF) u(k) (4)
Using (4) and denoting the impulse response of

Gy, and G,; as {k()} and {h,(-)}, respectively,

7(k) can be expressed as

uF( k) =

Ny—1
9wk = WD) u(k—1)

N —1
+ Zb Ro(i) k= i )sign(ulk— 1)) + v(A),
where it has been assumed that w«(k) =0 for
k<0, WE =h (k) =0 for £<0. A() and k(")
have the finite duration N, and N,”, respectively.

(3) can be represented in standard linear regression
form as:

y(k) = ¢T(BO + n(h), (6)
$(B = Tur(k—1) up(k—2) - up(k—Np)1 T

The estimated parameter using ordinary least sq-
uares 1s defined as follows:

-~

B = arg min{ % 2 150 Bla™ 6.N)urH 17, (D

where N is the number of data available. Note that
(7) corresponds to output error minimization. However,
the ordinary least squares method can be used to
solve this problem due to the special formm of the
representation (2). (3) can be rewritten compactly as
follows:



Y =06+ S, ®)

where
S=¥H+TH,+V

Y = [y(1) (2) - »(\V)]

up(O) uF( - 1)
o = uF‘(l) uF.(O)

uF(N— ].) uF(N_Z) uF(N:-NB)

- ug(l "NB)
- up(2 fNB)

wl) 0 - 0
g |¥@ WD) - 0

AN) w(N=1) ~ w(N—N,+1)

#*(1)sign(u(1)) 0 0
w*(2)sign(u(2)) w*(Dsign(u (1)) 0

W (Nsign{u(N)) w*(N—Dsign(e(N—1)) = u*(N— N,"+ Dsign(u(N~ N;"+1))

H=[h0) K1) - bN,— D17
H,= [ 2, (0) £, (1) - B, (NF—-1D17
Vo= [o(l) w2) -~ o] "

The nominal parameter vector & can be estimated
by the ordinary linear least squares method as
follows:

5 =(0T®) '0Ty. )

From (8) and (9) we can derive the following
expression for the estimation error:

6=9—06=(0T®)'07S. (10)

3. Recursive parameter estimation

For the recursive parameter estimation, (3) can be
rewritten as (11), which is the standard linear
regression form:

Wk = ¢T(Rok + ¢T(BH(E)

(11)
+ ¢ TH(B) + V(&) ,
where
ok = [ufk—1) up(k—2) -~ up({k—Np)1 7
Wk = [ulk) w(k—1) ~ w(b—Ny+1)1 7
¢u(B) = [ (Psign(u(R) o’ (k— sign(u(k—1))

- W (k—= NI+ Dsign(u(k—Ni+1)1 T
The nominal parameter vector can be estimated by
ordinary linear least squares method:

BB = P(BOT(R) VA, (12)
where

ok = [47(1) ¢7(2) TN T
B =[oTnok] ™ (13)

[ S0

The recursive parameter estimation algorithm can

It
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be then evaluated by the ordinary recursive least
squares method (Ljung, 1987) as follows:

0B = 6(k—1) + Kk ek (14)
KB = P(B$A
(15)
= P(k—1)¢(B) [ I+ ¢"(DPk-1) (A ]
k) = yB) — "D (k1) (16)
P(B) = [Pk—=1) 7' + (BT (B " 17

Now, it is necessary to say something about the
unmodelled impulse responses {A()} and {#,(:)}. Tt

would not make sense to assume these were known
since they would then hardly qualify as being
unmodelled dynamics. This dilemma can be solved by
adopting Bayesian point of view. One approach is
based on the stochastic embedding technique (Good-
win and Salgado, 1989) which is used to describe the
procedure of giving an a priori distribution to {4(-)}
and {4,(")}. Another approach proposed by Kwon et

al. (1994) uses some experimental data to evaluate the

expected value of the estimation error, E[ § gT].

This will be the basis of the fault detection method
to be described next.

III. Fault detection method

In the fault detection procedure, we shall use the
test variable based on the covariance of the esti-
mation error between two experiments. Thus in the
sequel we assume that we have access to two sets
of data 7, and I, where I, corresponds to non-
faulty data and I corresponds to the suspected
faulty data. The estimated parameter i may take di—
fferent values on each experiment:

~

N 6,, for data set I,
6 =13 18
§,, for data set I,

where @ denotes the estimated values of 6. We also
assume that H, H, and V are uncorrelated between

one another.

The fault detection procedure now amounts to
comparing 5,, and @ s and to decide if the observed
changes can be explained satisfactorily in terms of
the effects of noise, undermodelling and nonlinearity.
If not, then we may conclude that a system fault has

occurred. The covariance function of (8, — 8,) under

nonfaulty condition will be used in this paper as
measures of the uncertainty due to noise, undermo-
delling and nonlinearity.
1. Non-recursive scheme

The test variable for the fault detection can be
formulated as follows:
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T, = (6,— 9)7C' (6,— 9, (19)
where
C= Cow(d,— 0)=E [(B,— 8 (8,— 671
= (Q— QICAQ,— Q)"
+ (Qu— QuICiQun— Q) T+ (Pt P) a7,

(20)

Q= Pid)irwiy Qi = Pi¢iTwmy

Pi=(0]0)7", i=nf

CP=E[HHT], Ci=E[HH!].

Here, E denotes the expectation with respect to
the underlying probability space, and @, ¥ and &,
are as in (8).

The first and second term on the right side of (20)
account for the effects of undermodelling, nonlineari—
ties and the difference in input signals for the two
experiments. Note that if there is neither undermo-
delling nor nonlinearity, or if the inputs are identical,
these terms will be vanished. The third term on the
right side of (20) corresponds to the measurement
noise.

The stochastic assumptions corresponding to {A(-)}
and {4,(:)}, which implies exponentially bounded

unmodelled dynamics, would be to assume

ELWBRD] =Ry (21)
ELW(R, k5,1 =7, Rdy, (22)
where
AR = o6e ™, k=0,1,,N—1 (23)
rB) = o,2e P k=0,1,, Ny —1. (24)

This assumption can be found in some literature
on robust adaptive control and estimation (de Souza
et al, 1988, Middleton et al, 1988, Goodwin and
Salgado, 1989) If 6,2, ¢,°, 8 and B, were known as
prior information, then C; and Cj, could be directly
calculated by (21) and (22). Even if they were not
known, 6,2, 6,°, 8 and B, could be estimated from
a sequence of prior experiments on nonfaulty systems
based on the simple description (21) and (22) since
2/8 and 2/8, can be considered as the ‘average’
time constant for the class of unmodelled and lineari—
zation error dynamics, respectively (Kwon and Good-
win, 1990; Merrington et al., 1991).

If prior information about the likely undermodelling
and linearization error are not available, then H and
H, can be estimated from the available data, where
the maximum likelihood technique has been used
instead of the least-squares technique here (Kwon et
al, 1994). Firstly, the estimate of H can be evaluated
by full model:

/0\FULL _ oTo 07w T ooT
[ H N [ vl vty [ v ] Y. &

Thus the inversion formula for a partitioned matrix
gives
H=(v"n®)'vy,
a=I1- oo’ 'o".
Also, for the model of Section 2.,
EI(H-HXH-B"] = (¥"n®) s}, (26)

If H is considered as a realization of a random
variable, provided the noise is gaussian, then H and
(FTH® 62 can be viewed as the a posteriori
mean and covariance of the conditional distribution
for H, given the data Y. Under these conditions,
from (26),
ELHHTY) = E[(H-H+HH-H+B]7|Y]
—BH +E(H-IH-BTY]
=HH + @ 0w 62 = Cf. (26)

From (25), (26) and (27), the linearization error
covariance Cj, can also be derived

E[HHIY) =, BI+ (vInw) el
(28)
= c’:lﬂs

Py

H, = (viny,)'vliny.
Provided an independent data set is used to estimate
Cs and Cf, then the common symbol C;, and C,,
will be used to denote C; and Cj, (when a priori
data about H, is used) or Cf and Cj, (when a
posteriori data about H, is used).
2. Recursive scheme

The fault detection method in Section (18) is based
on a set of measurements, and it is not suitable for
real-time application. It is therefore desirable to make
a suitable reformulation of the algorithms in order to
provide efficient procedures in real-time applications.
On-line fault detection method is to be derived from
the recursive parameter estimation algorithm of (14)-
(17). The test variable (19) can be rewritten as
follows:

— — T — —
= —-0w] clwle-6em], @

where the subscripts n and f mean set of the normal
and faulty data, respectively, and

Ch) =1Q,~QAMNICI[Q,~QAM] T
+ [ Qu— QD] Cipp [ Q= QudB] T
+ [P, + P{k]) o®
QAR = PAROI (BT (k),

(30
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QAR = PAROT (D)W, (k) (31
-1 -1
PiRy= [0fHO:H] = [ 5ol (D] Li=ns

TR = [4f(1) 472 of1 7
AR = [gI(1) ¢I(2) (N1 T
The model mismatching error covariances, C, and

Cui, can be determined once by (20)-(21) or (27)-

(28) as mentioned in the previous section. Note that
in 30) P,, Q, and Q,, can be computed by a

prior information or experimental data which are
given from the normal data. Note the algebraic
similarity with the least squares estimate. Going
through the derivation of the RLS algorithm, it can
be seen that the estimates Qq(# and @,k in (31)

can be computed recursively as follows: Using the
relations

QB = PR [ Zo£0ef0)]
= PR [ D 6L007 () + 6(09FR |

g¢,<z>¢f<i> = P (k=17 QLk—1)

= PARTIQAk—1) — ¢RI (DQAL—1),
it follows that
QLR = QUk—1) — PARN$(B$](BQ;(k—1)

+ PARG (B ¢f(B)
= QAk—1) + PARG (B [¢F (B —F(BQ,(k—1)]
= QAk—1) + K (Re (k) , (32)

where the terms P,(k) and K,(k) can be determined

by (15)-(17) from the suspected faulty input-output
data. The prediction error gives the following form:

(k) = ¢f(B) — ] (DQ(k-1), (33)
and @,k is evaluated by the similar procedure as
that of Q;(k) which is proposed above.

IV. Simulations

To illustrate the application of the proposed method,
a simulated fossil-fueled boiler-turbine - alternator of
160 MW units is considered. A nonlinear 7th order
model presented by Bell and Astrom (1987) is used
in this paper. Details of the unit are available in
Eklund (1971). The unit is still in operation for peak
load purpose in Malmo Sweden.
1. Boiler model

The nonlinear model of a boiler system has been
proposed by Bell and Astrém (1987) as follows:

x = —0.0018U, - P + 0.9U, — 0.150;,
[ (0.73U, — 0.16)P"'% — P,] /10

x
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(141U;5 — Q,)/85
% = (A, — x)/10
(1000(A; — x,) — x5)/10
xs = (U — x4)/20
(3.55Q; — x7)/20,
and the outputs are taken as follows:
Y, = P=x
Y, =P = x
Y3 = Xy = 50(V,e — 66),

where the first three state variables x;, x; and x3

3

1l

x5

a7

are the drum steam pressure (kg/com?), the electrical
output (MW) and the drum/riser fluid density ( kg/
cm®), respectively, and the last four state variables
x4, x5, %3 and =x; are auxiliary states in order to
predict the drum water level shrink/swell for changes
in the fuel flow. U;, U, and U; are the inputs,
namely the fuel flow, control and feedwater actuator
positions, respectively, which are normalized. The
simple actuator dynamics which are the input cons-
traints are given below:

[T\ < 0.007/sec, 0< U1
—2/sec < U, < 0.02/sec, 0<U,<1
Uyl < 0.05/sec, 0<Uz<1,

The output Y3 is the drum water level deviation
about mean (mm). Q,, A, and V,, are the steam
mass flow rate (kg/em?), the steam quality (Vol
Ratio) and the volume of water in drum (m®),
respectively. The boiler model is implemented by
SIMULINK in this paper.

2. Nonlinear simulation

Boiler-turbine models are highly nonlinear, and
thus simplified linearized models are usually employ-
ed. For example, taking the fuel flow W; as the
input U; and the drum water level deviation X, as
the output Y3, an appropriate linearized nominal model
is given as follows:

biep + by
P+ fiep + foe
where p denotes the differential operator.

Taking noise and linearization errors into consi-
deration since (34) is the linearized nominal model for
the nonlinear boiler system, the underlying system
can be described by the following discretized model
similar to (1).

AX (k) = G(g ', AW (k) + Gog(a™ ) [AWARD 1 2+ v(B)

AX (D = AW(D, (34)

big '+ byg?
1+ fia™ '+ et

A nonfaulty data set and a faulty data set with -5%

Glgh e = (35)



Journal of Control, Automation and Systems Engineering, Vol. 5, No. 1, January, 1999 2}

change in the control upper bound were obtained
from a full nonlinear simulation with sampling time
T, = 3. The following constants were chosen: Ny =
2, Ny =10, and N = 1000. The input W, was assu—
med to be corrupted by a white noise with variance
02 = 0.05%, and measurement noise »(-) was chosen
as ol = 9.542. The fixed denominator was taken by
a prior experiment with nonfaulty data as £ =
—0.7317 and f, = —0.0277. The undermodelling and
linearization error have been evaluated by (27) and
(28).

The test variable 7T, has been adopted for fault

detection, and another test variable T. given by a

standard cross validation test (Soderstrom and Ku-
mamary, 1985) has been also applied for the sake of
comparison, where

T.=Y,— 0,0 )}~ 1Y, — 0,6 ,3,

and an ARMA (Auto-Regressive Moving Average)
model has been taken as the nominal model, which is
similar to (2) but its denominator is not necessarily
an optimal one, but it is included as being represen-
tative of the kind of test frequently used in practice.
Also, other test has been performed using the same
ARMA model as that of T, and accounting for only
the variance error due to noise. This test variable
has been denoted here as T,. Note that T, is de-

fined by the similar form to that of (19) but it uses
only the last two terms in (20) for the computation
of C, and the estimated parameter change in ARMA
parameters instead of numerator parameters in 7. It
is also noted that T, accounts for the error due to
noise alone and is one kind of the well-known x°
test variable.

The simulation results are shown in Fig. 3 and
summarized in Table 1. These results show that the
proposed fault detection method works very well
even under the effect of linearization error, ie., has
the robustness against the linearization error. That is
because the method accounts for the effect of
modelling linearization errors. Note that, on the other
hand, the cross validation test variable 7', and noise
only test variable T, do not perform satisfactorily
for this problem. Since they do not account the effect
of modelling error or linearization error.

The simulation has also been done to show the
performance of the on-line fault detection method.
The same values and conditions are used here in
order to set the same environments. The simulation
result 1s shown in Fig. 4, and this result shows that
the on-line method has also good performance
similarly as the off-line method. However, other test
variables 7. and 7, have not been accounted here

since they are not suitable for on-line problems.

V. Conclusions

A robust on-line fault detection method for
uncertain systems having undermodelling, linearization
errors and noise has been proposed. The key feature
of this method is that it accounts for the effects of
noise, model mismatch and linearization errors and
can be applied to on-line fault detection problem.
Some simulations applied to boiler-turbine systems
show that the proposed method works well and out-
perform existing methods. This improvement is a
consequence of the fact that the proposed method
explicitly accounts for the effects of undermodelling
and linearization errors in nonlinear systems and that
it provides the on-line algorithm for real-time appli-
cations.

The further research will be put emphasis upon
MIMO system and the optimization of calculation for
real time application.
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