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A New Method to Calculate Pseudoskin Factor of
a Partially-Penetrating Well
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Abstract : This study considers pseudosteady-state flow to a restricted-entry well in a single or multilayer aquifer with
crossflow. A simple method for calculating the pseudoskin factor caused by partial penetration is presented to overcome
a limited applicability in geometrical or computational aspects of previous methods. The computation is based on the
solution of a simplified pseudosteady-state equation that describes the long-time behavior of the closed radial system.
We illustrate the applicability of this method to various types of cylindrical systems and provide the results graphically.
Comparisons with previously published resuits have indicated that this method yields highly accurate estimates of pseu-
doskin factor with minimum computational effort. This method has also shown to be particularly useful for geometri-
cally-complicated systems. Greatly improved computational efficiency of pseudosteady-state approach permits the engineer

to easily account for the effect of partial penetration on the late-time performance of a well.
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Introduction

In many cases, the open hole or well screen of a pumping
well does not coincide with the full thickness of the aquifer.
This situation is referred to as restricted-entry or partial pene-
tration. When the interval open to flow is smaller than the
entire aquifer thickness, deformation of the flow pattern
owing to vertical flow components causes a resistance super-
imposed on that of a uniform radial flow. Therefore, pressure
responses show an additional pressure drop in comparison to
the pressure drop for a fully-penetrating well. At late times,
the additional pressure loss or productivity decrease due to
partial penetration can be accounted for by a lumped quantity
called a pseudoskin. The pseudoskin factor is a time-indepen-
dent quantity for times exceeding the start of pseudoradial
flow which is detected from the second straight line on a
semi-log plot of pressure vs. time (Streltsova, 1988).

This type of well completion has received considerable
attention in both the petroleum and groundwater hydrology
literature. Odeh (1968) presented a correlation for pseudoskin
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based on steady-state flow in a finite reservoir. Seth (1968)
presented a general expression to calculate the unsteady state
pressure distribution in a finite reservoir with partial well
penetration. Odeh (1977) used a finite cosine transform to
derive an analytical solution for the pseudosteady-state flow
of a well with limited entry and with an altered zone. Strelts-
ova-Adams (1978) used Laplace and Henkel transformations
to solve partial-penetration problems and derived an expres-
sion for a pseudoskin factor in terms of infinite sine and
cosine series.

In Odeh's (1980) article, pseudoskin factor as a function of
sand thickness, location of the open interval, and the well-
bore radius was given in a general equation form. Using a
2D finite-difference simulator, Reynolds et al. (1984) graphi-
cally presented pressure transient responses of a partially-
penetrated, two-layered reservoir where only one layer is
open to flow. Analyzing the steady-state analytical solution,
they identified the correlating parameters and then obtained a
correlation for skin factor by regression analysis. Papatzacos
(1987) used the method of images, which uses an infinite
number of image wells to generate no-flow condition, to
solve partial-penetration problems. Using a numerical simula-
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tor, Yeh and Reynolds (1989) graphically presented pseu-
doskin factors, and obtained an expression for the pseudoskin
factor. Olarewaju and Lee (1989) studied the pressure
buildup behavior of a partially-penetrating well in a two-lay-
ered reservoir with closed top and bottom boundaries. By
regression analysis, they developed a series of expressions
correlating the pseudoskin factor with the penetration ratio
for various values of permeability ratios.

Vrbik (1986, 1991) derived a simple formula for the pseu-
doskin factor due to partial well completion using equations
for steady-state flow of an incompressible fluid. Under the
assumptions of a pseudosteady-state interlayer crossflow,
Gomes and Ambastha (1993) developed analytical expres-
sions for partially-penetrating wells in multilayered reservoirs
with both closed top and bottom boundaries, and with bot-
.om-water zones and/or gas caps. Ding and Reynolds (1994)
extended Papatzacos' (1987) expression for pseudoskin for a
single-layered reservoir to that of a multilayered reservoir
and reported a good match with simulated results.

All of preceding methods, however, have a limited applica-
bility in geometrical or computational aspects. They are
cither insufficiently accurate due to assumptions made during
the mathematical derivation or require the extensive use of a
iransient numerical simulator. The main objective of this
study is to present a simple method for estimating pseudoskin
factors in various types of cylindrical reservoirs with mini-
mum computational effort. This method focuses on the appli-
cation of the pseudosteady-state equation to flow in a
cylindrical system with a restricted-entry well completed in a
single or multilayer reservoir.

Mathematical Formulation

To compute the pseudoskin factor, we consider a vertical,
single or multilayer porous cylinder of uniform thickness A
and a finite system outer radius r,. Each layer is assumed to
be horizontally continnous, homogeneous, of uniform thick-
ness and either isotropic or anisotropic, but the permeability
is different from that of other layers. The average horizontal
and vertical permeabilities k are and k,, respectively. The
vertical permeability of each layer is nonzero and the layers
ere not entirely separated by impervious layers. Therefore,
interlayer crossflow can occur. A single well of radius r,, pro-
cuces at a constant rate q at the center of the cylinder, but
ray extend only through a limited height h, at a specified
lzvel. The surface of the cylinder is impermeable to the flow
and thus represents a no-flow boundary.

Since the pressure exhibits radial symmetry, the mathemati-
cal model is a 2D r-z model. Rewriting dimensionless diffu-
sivity equation for the flow through an anisotropic aquifer in

radial geometry results in
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where, c, = total compressibility
k = permeability
pw = wellbore pressure

t = time
L = viscosity
¢ = porosity

The boundary condition along the z axis at the wells open
interval is to be a fixed one to incorporate the assumptions of
both constant flowrate and infinite-conductivity wellbore.

pp =0 ¥
For the other boundaries, no flow conditions are assigned.
(Vp)-n =0 ©)

Solving Eq. 1 for the case of a fully penetrating well, we can
obtain the pressure distribution in the aquifer.
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We let (pp — p.p). denote the dimensionless pressure draw-
down for the case where the entire interval is open to flow.
Integrating Eq. 10, we have
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Assuming that an aquifer is sufficiently large (2, ) 1) and
neglecting the term of O[lnrp/(r2y-1)] in Eq. 12, we obtain



Kun-Sang Lee

the usual inflow equation.

_ 3
(Pp— Pwp), = —(lnrep - Z) (13)

Long-time behavior of a closed aquifer can be described as
a pseudosteady-state equation (Lee et al., 1998). With a sin-
gle calculation, the pseudosteady-state approach yields com-
plete pressure and flux distributions for all time after onset of
pseudosteady state. Applying the approach to Eq. 1 trans-
forms it into

)¢ )

During the pseudosteady-state flow period, the pressure
drawdown for the case of partial penetration, which can be
easily obtained by integrating the solution of Eq. 14 com-
puted from a numerical model, is given by
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The pseudoskin factor due to partial penetration s, is defined
as an additional dimensionless pressure drawdown. From the

Eq. 13, one can evaluate the pseudoskin factor as

$p = (Pp—Pwp)e — (Pp — Pwp) - (16)
That is, the pseudoskin factor represents the additional di-
mensionless pressure drop necessary to produce fluid at a
given rate because of partial penetration.

Numerical Examples

The computation of pseudoskin factor is based on the
numerical results generated from a finite-element program
(Sewell, 1993) that yields highly accurate solutions. In this
study, we first consider the single layer problem. Next, sev-
eral example cases of multilayered problems are considered.
For each case, our solutions are compared with results avail-
able in the literature.

Single-Layer Cases

Two possible single-layer cases are considered. The first
case assumes that the open interval is adjacent to the top (or
by symmetry the bottom) of the aquifer and the second case
allows an arbitrary location of the open interval.

First, we consider the case where the top of the open inter-
val is adjacent to the top boundary, as shown in Figure 1.
Here h is the total aquifer thickness and h,, is the length of
the open interval, as designated before. From the figure, we
can define dimensionless thickness and height of open inter-
val and penetration ratio.
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Figure 1. Schematic representation of a single-layer cylindrical system
with open interval at the top of the aquifer.
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Computations were performed for a wide range of h,, between
50 and 1000. For a single-layer aquifer with b = 0.1, Figure
2 presents a comparison of pseudoskin factor computed from
our pseudosteady-state model and values estimated from ear-
lier studies. As shown in the figure, for a given penetration
ratio of (.1, all results essentially agree. The actual value of
pseudoskin factor increases as aquifer thickness increases.

The aquifer configuration of the single-layer case, in which
the location of the open interval is arbitrary, is depicted in
Figure 3. Here, h, is equal to the height of the open interval.
The ratio of hy/h represents the dimensionless distance
between the top of the open interval and the top of the aqui-
fer. Figure 4 presents the results for one set of computations
which was conducted to investigate the effect of the location
of the open interval. For all cases considered, b = 0.1 and hp
= 200. The location of the open interval (h,/h) varies from
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Figure 2. Pseudoskin factor of a single-layer cylindrical system with
open interval at the top of the aquifer (h,/h =0.1).
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Figure 3. Schematic representation of a single-layer cylindrical system
with open interval at arbitrary vertical location,
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Figure 4. Pseudoskin factor of a single-layer cylindrical system with
open interval at arbitrary vertical location (hy, = 200, h,/h =0.1).

case to case. Differences between the sets of results are not
great, but the discrepancy is more significant than the first
case due to the scale of the y axis and relatively complex
geometry of the problem. Our solutions are closest to the Yeh
and Reynolds (1989) results, which we believe to be the
most accurate because of fewest assumptions made during
numerical simulations. Figure 4 indicates that as hy/h in-
creases, the pseudoskin factor decreases. In other words, as
the producing interval moves away from the boundary, the
pseudoskin value decreases, having a minimum value when
the producing interval is centrally located (h,/h = 0.45).

Multiayered Cases

The computation of pseudoskin factor resulting from re-
stricted entry is also extended to the multilayered cases. We
first consider a two-layered case where one layer is open to
flow. In other words, the open interval is adjacent to only one
layer and the length of this interval is equal to the thickness
of this layer. Second, we consider a five-layered case where
‘he open interval is at the top or middle of the aquifer.

For the layered problem considered here, it is appropriate
10 define the thickness-averaged horizontal permeability by
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(20)

where j is a layer index and n is the number of layers.
Accordingly, the dimensionless pressure and time should be
redefined on the basis of average properties.

The two-layer problem shown in Figure 5 is considered
first. For all cases, the top of the open interval is adjacent to
the top of the aquifer. The open interval is always designated
as layer 1, and thus, our assumptions imply that h, = h,.
Three different cases, which cover a wide range of practical
interest, are chosen from Yeh and Reynolds' (1989) paper.
Table 1 compares geometry and permeability data for each
system. Figure 6 compares values from our study with values
from earlier studies. To obtain a numerical value from Gomes
and Ambastha's (1993) analytical expression containing modi-
fied Bessel functions, we use a polynomial approximation
(Abramowitz and Stegun, 1964). The origin of the relating
large discrepancies with Gomes and Ambastha's solution
comes from the facts that they assumed pseudosteady-state
crossflow and their solution always shows the highest value.
Our results are sufficiently close to Yeh and Reynold's
numerical solutions which are considered to be the most reli-
able because they are based on fine-grid simulation study.

Results from the equal-thickness, five-layered problem are
given in Table 2. Each layer has a different permeability and
is anisotropic. Cases 1 and 2 of Table 2 pertain to five-lay-
ered cases where the top layer is open to flow (Figure 7a).
Figure 7b shows a five-layered aquifer with the middle layer
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Figure 5. Two-layered system with top layer open to flow.

Table 1. Description of two-layered aquifers chosen for pseudoskin
calculation

Case 1 Case 2 Case 3
h/r, 100 75 50
h,/h 04 0.3 0.2
ky/k, 0.167 0.259 0.444
ky/k,, 0.25 0.444 1.0
kyo/K,; 0.9 6.514 50.625
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Figure 6. Comparison of pseudoskin factors for a two-layered aquifer.

Table 2. Description of five-layered aquifers chosen for pseudoskin
calculation

Case 1 Case 2 Case 3 Case 4
h/r,, 250 250 250 250
ki/k, 0.50 0.50 0.80 0.80
k,/k; 0.25 0.25 0.32 0.32
k/k, 5.00 5.00 0.80 0.80
ky/ks 0.50 0.50 0.32 0.32
ky/k, 1.00 1.00 1.00 1.00
ky/K .5 1.00 1.00 5.00 5.00
ky/k ,3 6.67 1.00 5.00 1.00
koK ,4 5.00 1.00 5.00 5.00
ky/k 5 70.0 1.00 5.00 1.00
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Figure 7. Five-layered system with (a) top layer open to flow and (b)
middle layer open to flow.

perforated (Cases 3 and 4). We have denoted the layer open
to the flow as Layer 1. In this problem, few numerical values
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Figure 8. Comparison of pseudoskin factors for a five-layered aquifer.

for pseudoskin have been published due to its geometrical
complexity. As presented in Figure 8, a comparison is, there-
fore, made with values only from Yeh and Reynolds (1989).
Again, the agreement is seen to be quite good for all cases
considered.

Conclusions

A simple method was presented to generate the pseudoskin
factor resulting from a partial penetration in a single or multi-
layered aquifer where crossflow occurs between layers. The
development of this method consists of applying a pseudo-
steady-state diffusivity equation stating a long-time pressure
distribution of a closed aquifer. With a single application of
the pseudosteady-state approach, we can obtain the correct
value of pseudoskin factor directly for any geometrically-
complicated radial systems normally encountered in practice.
A detailed numerical investigation in various situations shows
that the pseudosteady-state approach gives a simple and reli-
able means to calculate pseudoskin factor. The method over-
comes a limited applicability in geometrical or computational
aspects of previous methods,
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