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Use of a Solution-Adaptive Grid (SAG) Method for
the Solution of the Unsaturated Flow Equation
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Abstract : A new numerical method using solution-adaptive grids (SAG) is developed to solve the Richards' equation
(RE) for unsaturated flow in porous media. Using a grid generation technique, the SAG method automatically redistrib-
utes a fixed number of grid points during the flow process, so that more grid points are clustered in regions of large
solution gradients. The method uses the coordinate transformation technique to employ a new transformed RE, which is
solved with the standard finite difference method. The movement of grid points is incorporated into the transformed RE,
and therefore all computation is performed on fixed grid points of the transformed domain without using any interpola-
tion techniques. Thus, numerical difficulties arising from the movement of the wetting front during the infiltration pro-
cess have been substantially overcome by the new method. Numerical experiments for an one-dimensional infiltration
problem are presented to compare the SAG method to the modified Picard method using a fixed grid. Results show that
accuracy of a SAG solution using 41 nodes is comparable with the solution of the fixed grid method using 201 nodes,
while it requires only 50% of the CPU time. The global mass balance and the convergence of SAG solutions are
strongly affected by the time step size (At) and the weighting parameter (y) used for generating solution-adaptive grids.
Thus, the method requires automated readjustment of At and y to yield mass-conservative and convergent solutions,
although it may increase computational costs. The method can be effective especially for simulating unsaturated flow
and other transport problems involving the propagation of a sharp-front.
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introduction

Simulation of groundwater flow in unsaturated porous
media is of importance, since the contaminant problems of
soil and groundwater are critically influenced by fluid move-
ment in the unsaturated zone. Unsaturated flow in porous
media is mostly modeled using Richards' equation (RE) with
associated constitutive relations. The formulation of RE is
based on the mass conservation principle with the Darcy's
'aw, and the constitutive relations describe the relationship
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among pressure heads, effective saturations, and relative
hydraulic conductivities.

Highly nonlinear property of the constitutive relations
makes analytical solutions impossible except for special cases
(Barry et al., 1993; Tracy, 1995). Thus, RE is usually solved
using various numerical methods such as the finite difference
and the finite element methods. During the last two decades,
many scientists have involved in simulation of RE and devel-
oped numerical models for unsaturated flow in porous media.
In general, most of these models tried to solve a system of
nonlinear partial differential equations (PDEs) for three forms
of RE, using a fixed grid scheme (Milly, 1985; Hills er al.,
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1989; Celia.et al., 1990; Paniconi and Putti, 1994; Rathfelder
and Abriola, 1994; Miller et al., 1998). Recently, Kirkland ez
al. (1992) and Pan and Wierenga (1995) introduced transfor-
mation methods which can improve solution efficiency com-
pared to standard solution techniques.

One of difficulties encountered in numerical methods for
obtaining accurate solutions to RE is that the wetting front,
having a high solution-gradient by definition, moves with
time. The problem of the resolution near the wetting front is
important from the physical point of view as well as the trun-
cation error point of view, since nonlinear process associated
with the constitutive relations mainly occurs near the sharp
wetting front. In order to handle this problem effectively, it is
needed to put more grid points near the sharp wetting front
and to put less grid points away from it. Thus, numerical
methods using a fixed grid scheme have inherent limitations
to obtain accurate solutions to RE. Therefore, it is desirable
to employ numerical methods with a moving grid scheme
which simultaneously preserves both the computational effi-
ciency and the solution accuracy.

Driven by the needs for a dense grid near the wetting front,
some numerical methods have been developed (Lang et al.,
1990; Gottardi and Venutelli, 1992; Huang et al., 1994). In
general, these adaptive methods can be divided into two cate-
gories. One is a moving grid point method in which grid
points, without changing the number of points, are moved so
that they are concentrated near the wetting front. The r-ver-
sion method of Lang et al. (1990), the moving finite element
(MFE) method of Gottardi and Venutelli (1992), and the
Eulerian-Lagrangian approach of Huang er al. (1994) fall on
this category. The other is to add extra grid points near the
wetting front. The h-version method of Lang et al. (1990)
falls on the second category of the adaptive methods.

This paper present a nicely formulated and systematic solu-
tion approach to RE which employs a solution-adaptive grid
(SAG) method. The method automatically redistributes a
fixed number of grid points using a grid generation tech-
nique, so that more grid points are concentrated in regions of
high solution gradients. The method uses the coordinate
transformation technique to employ a new transformed RE,
which is solved with the standard finite difference method.
Thus, numerical difficulties arising from the movement of the
wetting front during the infiltration process can be substan-
tially overcome by the new method. Numerical results for an
one-dimensional infiltration problem are presented to com-
pare the SAG method to the modified Picard method (Celia
et al., 1990) using a fixed grid.

Modified Picard Method in a Fixed Grid
Scheme
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Richards' equation (RE)

The unsaturated flow in porous media is commonly
described by the Richards' equation. RE can be expressed by
the following three forms depending on selection of the

dependent variable:
oy, oK
C(h)ﬁ =V-K()Vh+ = (1)
a0 _ oK
= V-D(G)Ve+~a; (2)
% _y. 9K
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where h and 0 are the pressure head and the volumetric water
content, respectively; C = d6/dh and D = K/C are the specific
moisture capacity and the unsaturated diffusivity, respectively;
K is the unsaturated hydraulic conductivity; and z is the car-
tesian coordinate in vertical direction. RE is a nonlinear PDE,
since C, D and K vary strongly with h and 8 in unsaturated
soils. Thus, in order to solve these equations, associated con-
stitutive relations such as 8(h) and K(h) are required.

Numerical solutions to the h-based form of (1) have been
reported to produce significant mass balance errors and time
step limitations (Celia et al., 1990). 0-based form of (2),
while it produces reliable mass balance accuracy (Hills et al.,
1989), can not be used for layered media with discontinuous
0 profiles and saturated flow conditions. Recently, the mixed
form of (3) has been widely used in finite difference or finite
element methods, since it produces a perfect mass balance in
the solution and simultaneously preserves advantages of the
h-based form (Celia er al., 1990; Miller er al., 1998). The
numerical method for solving the mixed form of RE will be
briefly explained below. A more detailed explanation can be
found in Celia et al. (1990).

Modified Picard Algorithm
Applying a backward Euler approximation coupled with a
Picard iteration scheme to one-dimensional form of (3) yields
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where n and m represent time and iteration level, respec-
tively. A truncated Taylor series expansion of &™"™' with
respect to h about the point h™"™ can be expressed as
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Assuming 8 = h™'™! — k™™ and substituting (5) into (4)
yield a modified Picard approximation;
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Applying the standard finite difference approximation to z-
derivative terms leads to
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where the dependent variable is the increment in iteration
(8™). The right side of (7) is an error measure for the finite
difference approximation coupled with the Picard iteration
procedure. Thus, convergence of the solution at each time step
can be achieved by repeating the Picard iteration procedure
until both 8 and R™"™ approach a convergence tolerance.

The internodal hydraulic conductivity K45, is evaluated by
using the arithmetic average of K;., and K;. Although not a
problem of concern in this study, it should be noted that
selection of a internodal conductivity scheme can greatly
affect the convergence and accuracy of the solution to RE
(Desbarats, 1995).

Constitutive relations

In order to solve RE, constitutive relations, which describe
the relationship among pressure heads, effective saturations,
and relative hydraulic conductivities, are required. The van
Genuchten-Mualem (VGM) relations are most widely used in
the literature. The van Genuchten (1980) relation describes
the relationship between pressure heads (h) and effective sat-
urations (S,), and the Mualem (1976) relation does between
effective saturations (S,) and hydraulic conductivities (K). The
equations are written as

8(h)-0 —
sy = 20~ (v pan)™ (h<0) ®
K(S,) = K.JS.[1-(1-S/™") ©)

where m = 1 —1/n; n and o are fitting parameters related to
the uniformity of the pore-size distribution and the mean pore
size, respectively; ©, and 6, are the saturated volumetric
water content and the residual volumetric water content,
respectively; and K, is the water-saturated hydraulic conduc-
tivity. Based on these closed form VGM relations, the nonlin-
ear parameters (6 and K) in RE can be calculated.

The specific moisture content (C) in (7) is defined as C(h)
== d0/dh; thus, it can be obtained from the derivative of (8)
with respect to h. The resulting equation is

(6,-6,)(n—1)[n" "o
(1+ohl)™ "

C(h) = (10)
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Solution-Adaptive Grid Method

The basic philosophy of the SAG method is to put more
grid points in high gradient regions at a given time. The
method is computationally efficient for propagation types of
problems, such as movement of the sharp wetting front in
unsaturated flow. In the SAG method, the discretization in a
problem domain is not stationary, but time-dependent. Thus,
the method requires a grid system that is dependent upon the
solution gradients at each time step, which should be numeri-
cally and automatically generated along with the solution.

The key idea of the method is to simplify the numerical
analysis by transforming the physical domain with moving
grids to the computational domain with a stationary grid,
although the governing equation in the new domain is rather
complicated compared to the original one. As will be shown
below, if the time derivative term is transformed from the
physical domain to the computational domain, no interpola-
tion is required for the movement of grids. Thus, standard
finite difference methods can be readily used in the trans-
formed domain without considerations of moving grids in the
physical domain.

This adaptive grid technique has been developed and is
used extensively in aerodynamics and heat flow areas of
study (Eiseman, 1987; Hawken et al., 1991). Recently it also
has been applied for groundwater modeling problems with
moving boundaries (Koo and Leap; 1998). In the present
study, a solution-adaptive grid method based on the finite dif-
ference method was developed to solve RE in one-dimen-
sional flow problems. Major emphases were given to the
development of a solution method to the transformed RE
associated with the modified Picard scheme and a numerical
procedure for generating a solution-adaptive grid, particularly
in response to movement of the wetting front.

Coordinate Transformation of RE

The formulation of the SAG method begins with transfor-
mation of the governing equation from the physical space to
the computational space. Partial derivatives with respect to
coordinates in the physical domain (z, t) can be transformed
to those in the computational domain (€, 1) using the chain
rule differentiation;
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where ] is the Jacobian determinant of the inverse transfor-
mation given by
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Substituting (11) and (12) into (3) leads to the transformed
equation of the mixed form RE;
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The second term in the left-hand side of (14) is a pseudo-
advective component related to the grid movement in the
physical domain. Thus, the movement of grid points is incor-
porated into the transformed RE, and therefore all computa-
tion can be performed on fixed grid points of the transformed
domain without using any interpolation techniques. The
transformed equation describes the Lagrangian frame of ref-
erence, in which the attention is focused not on a fixed point,

(14)

but on the grid point moving in the physical domain.

Modified Picard Aigorithm for the transformed RE
Again, the modified Picard approximation is applied to the
transformed RE. The resulting equation is given by
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Applying the standard finite difference approximation to &-
derivative terms leads to a discretized formula similar to (7)
except the additional pseudo-advective term;
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where unit grid spacing is used for &; that is, AS=1. The
pseudo-velocity term v{*' is evaluated by

)

For discretization of the advective term, the centered and
the upwinding differences are widely used. The centered dif-
ference scheme leads to an accurate solution, while it can
adversely affect the diagonal dominance of the coefficient
matrix. On the other hand, the upwinding difference scheme
yields a diagonally dominant matrix, while it introduces an
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implicit numerical diffusion. Thus, if the advection is rela-
tively small, the centered difference can be suitably used to
obtain an accurate solution. For the other case, however, the
upwinding scheme is preferred due to its numerical stability.
For the upwinding scheme, the advection term is approxi-
mated depending on the direction of grid movement, and thus
expressed as

n+l,mgm
i+1 8i+1

-t (i)

1

8 n+l,mem, _
EE(C 8™ =C

3

Comparative analyses of two schemes used for the SAG
method will be presented.

n+\,m6m)=cp+\,m8m_ :\+11 mSm (V?+‘>O)

(18)

Numerical Grid Generation

Numerical grid generation is a process of determining the
grid in the physical domain which corresponds to the uniform
grid in the computational domain. Generation of a solution-
adaptive grid is an integral part of the SAG method. A num-
ber of grid generation algorithms have been developed.
Thompson et al. (1985) gives a comprehensive review on
numerical grid generation methods.

Among various grid generation methods, partial differential
equation (PDE) methods are popular in the literature. PDE
methods generate a grid by solving a system of PDEs, of
which the most widely used are elliptic equations. According
to Knupp and Steinberg (1993), elliptic PDE methods are
grouped into two categoties: the length generator and the
smoothness generator. The length generator takes the physical
coordinates to be the solutions of elliptic equations in the
transformed domain, while the smoothness generator takes
the transformed coordinates to be the solutions in the physi-
cal space.

In this study, a length generator with a Laplace-like equa-
tion is used for grid generation;

2 oz

#poF) -0
Using an appropriate function for the coefficient (), distri-
bution of grid points can be controlled in the physical
domain. An exponential control function is used for the coef-
ficient;
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where v is the weighting parameter, L is the length of the
physical domain, z, is the location of the wetting front, and R
is the radius of weight. z, can be determined by numerically
searching for a grid point which has a maximum gradient of

(Jz— 2z £R)

(|z- 2z >R) 20)
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the solution at each time step. A major limitation of this con-
trol function from the numerical point of view is that an
appropriate value for y and R should be determined by a heu-
ristic method depending on problems.

Solution-adaptive grids are generated by solving (19) with
the associated control function of (20). Dirichlet boundary
conditions, z(1) = 0 and z(N) = L, are applied, so that the grid
points are fixed at the boundaries.

Solution Procedure

For the new time step (n+1), the sequence of algorithm of
the SAG method for solving the transformed RE is as follows.

(1) Assuming z™' = z", equation (16) is solved to get a
temporary solution h™' using the modified Picard iteration
method.

(2) Based on the temporary solution h™', equation (19) is
solved to generate a solution-adaptive grid z™*'.

(3) The transformation parameter I™' is updated.

(4) With new values of z™' and J™', equation (16) is
solved again to get a new solution h™*'.

During the modified Picard iteration, the Thomas algorithm
is applied for solving a system of linear equations that has a
ridiagonal coefficient matrix, and iteration is repeated until a
convergence is achieved for both § and R™'™, In order to
increase the solution accuracy, multiple grid generation could

‘3¢ executed for each time step by repeating the sequence (2),
3), and (4). However, a test showed that a desirable distribu-
rion of grid points was achieved by two iterations, and fur-
ther iterations did not change the solution.

Numerical Resuits

A series of numerical experiments for simulating infiltra-
tion of the wetting front into an injtially dry soil were per-
formed to test robustness of the SAG method.

Fixed Grid Method of Celia et al (1990)

For the purpose of comparative analyses of the SAG
method to the standard fixed grid method, numerical solu-
tions of Celia et al. (1990) were reproduced by solving (7)
with the VGM relations. The values of the parameters used
in the VGM equations are: n=2, o=0.0335 cm™, 6, =
(.368, 8, = 0.102, and K, =0.00922 cm/s. h(z, 0) =— 1000 cm
is used for the initial condition, and h(0, t) =~ 1000 cm and h
(100 ¢m, t) = — 75 cm are used for the boundary conditions.

Solution profiles at 24 hours of transient simulations are
presented in Figures 1 and 2, for different time steps and for
cifferent grid spacings, respectively. Figure 1 shows that the
solutions of the modified Picard iteration method are insensi-
tive to At. As shown in Figure 2, however, the wetting front is
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Figure 1. Simulated solution profiles using the fixed grid method for
different time steps.
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Figure 2. Simulated solution profiles using the fixed grid method for
different grid spacings.

more diffused, and infiltration depths of the wetting front are
overestimated as Az increases. Thus, as Celia et al. (1990)
mentioned, the solutions of the modified Picard iteration
method are greatly influenced by the spacial truncation errors.

SAG Method

For the same infiltration problem, several numerical solu-
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tions were obtained using the SAG method. Figure 3 shows
numerical solutions using both the fixed grid method and the
SAG method with At=1 hour. The dashed line and the bold
solid line indicate solutions using the fixed grid method with
Az =2.5 cm and 0.5 cm; thus, the number of grid points (N)
is 41 and 201, respectively. The solid lines with symbols
indicate solutions of the SAG method for different values of
the weighting parameter (y) in Eqn. (20). All of them used
the same number of grid points (N =41) and the same radius
of weight (R =25). Figure 3 presents that, if an appropriate
value of the weighting parameter is used, the SAG method
with N =41 could produce the solution with the same accu-
racy as that of the fixed grid method with N=201. It is
shown, on the contrary, that the infiltration depth of the wet-
ting front could be underestimated if the value of the weight-
ing parameter is too high.

The distributions of moving grid points for y=2, 6, 10,
and 14 are shown in Figures 4a, 4b, 4c, and 4d, respectively.
They clearly show that the grid points are progressively
redistributed in accordance with downward movement of the
wetting front, resulting in a dense grid near the wetting
front.

Computational efficiency was evaluated on the basis of
CPU time. In Table 1, the CPU times for six simulations are
presented. All the simulations were performed using an IBM
PC with 64 Mbytes of RAM and 200 MHz of the processor
speed. The CPU time for the SAG method is significantly
enhanced as 7y increases. This is mainly due to the fact that

pressure head (cm)
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50 4 l 1 I 1 L —
solution-adaptive grid
45 —
£
A
p 4
=
o
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Figure 3. Comparison of solution profiles using the fixed grid method
and the SAG method.
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Figure 4. Distributions of moving grid points for different weighting
parameters: (a) Y=2, (b) y=6, (c) Y= 10, and (d) y=14.

Table 1. Comparison of the computing time of six simulations
performed in the present study

method N ¥ R (cm) CPU time (sec)
. 41 - - 1.05
fixedgrid 5, - - 9.28
41 2 25 291
sdantive aid 4 6 25 374
apuveEne 4 10 25 461
41 14 25 6.04

the convergence of the Picard iteration scheme exhibited
strong dependence on the magnitude of the pseudo-advection
term of (14); that is, more Picard iterations are required for a
simulation that uses higher value of ¥, resulting in increase of
the CPU time. The SAG method seems to produce some
improvements in computational costs, if considered that the
method using y= 10 yields a solution with the same accuracy
as the fixed grid method with N =201, while it requires only
half of the CPU time. This result demonstrates one of the
most attractive feature of the SAG method, that is, the ability
to obtain solutions with much less computational effort and
grid points than required by the fixed grid method, with no
loss of accuracy.

Figures 5 and 6 present solution profiles obtained when the
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Figure 5. Solution profiles using the centered difference scheme for the
pseudo-advection term,
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Figure 6. Solution profiles using the upwinding difference scheme for
the pseudo-advection term.

centered difference and the upwinding difference schemes are
applied to the pseudo-advection term, respectively. In Figure
5, the numerical solution of the centered difference scheme
exhibits a spacial oscillation over several nodal points ahead
of the wetting front, which is an unrealistic physical process.
"This oscillatory behavior of the solution can be explained by
rewriting (16) as follows:
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where a;,, and d,;, are the advection number and the diffu-
sion number, respectively. They are written as

v;Cii AT
i+ = AgCl (22)
Kyt
Gt = RE I @

From (22) and (23), the Peclet number of the SAG method
can be defined as

i1 ViCisJJis1 2 AG
Py = — = ———+— 24
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Substituting (24) into (21) yields
di~](—%Pi~l - 1)5im-1 +(1+d;_ +di, )8
1 m AT n+1l,m
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The coefficient of 8™ and the diffusion number d;., are
always positive. Thus, if the coefficient of either 6T, or 8%,
becomes positive, the contribution of 8%, to & is negative,
which is physically incorrect and causes oscillatory behavior
in the solution. Consequently, the following grid velocity cri-
terion should be satisfied to obtain physically correct solu-

tions with no oscillation;

Ki 12 <v,<2
CioiJiJis 1288

Kiiin
Ci+lJiJi+1/2AE.:
Figure 7 shows grid points that do not satisfy (26); that is,
P,_, <=2 or P,,; > 2. Most of these points are located in the
region ahead of the wetting front, which is in dry conditions.
As shown in Figure 8, the ratio of the specific moisture con-
tent to the unsaturated hydraulic conductivity increases as the
pressure head decreases, or as the soil becomes drier. There-
fore, the degree of oscillations would be affected by the ini-
tial condition of soils as well as the grid velocity.

On the other hand, the upwinding scheme gives

-2

(26)
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dior(=31-Pra 01 18T, @7)
where the bracket [A, B] denotes the maximum value between
A and B. The upwinding coefficients of 87y, are always neg-
ative, and this guarantees no oscillation in the solution. Thus,
the oscillation was eliminated in the upwinding difference
scheme as shown in Figure 6. For this reason, the upwinding
scheme is preferred for the present study.
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Mass Balance Errors of the SAG method
The global mass balance was calculated for all the simula-

tions to measure the capability of the SAG method in mass
conservation. The mass balance is defined as a ratio of the
total mass added into the domain to the total net flux into the
domain; thus, it can be expressed as

MBSAG =
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As shown in Figure 9, the fixed grid method employing
the modified Picard iteration scheme produces a perfect mass
balance regardless of time step sizes (Celia et al., 1990).
Unfortunately, however, the SAG method produces a moder-
ate decline of the mass balance as either At or 7y increases.
Because At and 7y are certainly related to the pseudo-advec-
tion, the mass balance error is likely attributed to the trunca-
tion errors in upwinding differencing of the pseudo-adve-
ction term. The modified differential equation (MDE) for the
transformed RE could provide information on the truncation
errors associated with the upwinding difference scheme. A
detailed explanation on the MDE can be found in Hoffman
(1992).

Therefore, contrary to the fixed grid method, the SAG
method requires time step limitations in maintaining mass
balance; that is, the computer code could be modified to
automatically adjust the time step size according to the calcu-
lated mass balance. Thus, mass balance errors can be greatly
reduced in the SAG method by employing an automated
readjustment of the time step size, which is not considered in
this study.

Convergence of the SAG method

With varying the time step size, convergence behavior of
the Picard iteration scheme for the SAG method was exam-
ined for the same infiltration problem. The number of Picard
iterations are generally increased for higher value of At, and
oscillations of the solution occurred from one iteration to the
next at all time steps after a breakpoint of At, which resulted
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Figure 9. Mass balance error versus time step size for different
weighting parameters.
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in no convergence of the solution. The under-relaxation
method is used to enhance convergence of the Picard itera-
tion scheme when oscillations are encountered during the
iteration. The method updates solutions using both values at
the current and previous iteration levels; that is,

hn<r-1,m-v-l

- th+1,m+1+(1_g)hn+l,m (29)

where € represents the relaxation parameter. In this study, Q
is initially set to =1 (no relaxation), and reduced by a fac-
tor of 0.1 whenever the number of Picard iterations exceeds
the maximum number of iterations specified in the code for
termination. Thus, the code is designed to successively
reduce Q when convergence of the solution is very slow, or
oscillation occurs. Figure 10 presents variations of the relax-
ation parameter versus At. Figure 10 indicates that the in-
crease of either At or y adversely affects convergence of the
solution. Similar to the mass balance, the convergence is
strongly related to the relative magnitude of the pseudo-
advection term. Thus, the SAG method can be further
improved by incorporating an automated procedure of read-
justing At and y which virtually yields a mass-conservative
and convergent solution.

Extension of the method to multi-dimensions

In terms of conceptual formulation, the SAG method intro-
duced in this study for solving one-dimensional RE can be
readily extended to multi-dimensions. However, transforma-
tion in muiti-dimensions will give cross-derivative terms in
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Figure 10. Relaxation parameter (2) versus time step size for different
weighting parameters.
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the transformed RE, which are quite troublesome when
applying the finite difference method. Thus, a somewhat dif-
ferent discretization scheme should be used to handle cross-
derivatives. For solving a system of linear equations, iterative
methods rather than the Thomas algorithm should be
employed. Multi-dimensional version of (19) may be used for
generating solution-adaptive grids. However, the control
function should be formulated in a different way, since the
location of the wetting front is not a point, but a line or a
surface in multi-dimensions. The SAG method is being
extended to two-dimensional unsaturated flow problems by
the author.

Conclusions

The SAG method was introduced as an effective numerical
technique for solving unsaturated flow problems. Based on
comparative analyses of the SAG method and traditional
fixed grid method for an infiltration problem, the following
conclusions are drawn:

1. The proposed equation for the generation of an adaptive
grid consistently produced a dense grid near the wetting front
through the simulation. The only limitation of the equation is
that an appropriate value of the weighting parameter should
be determined by trial and error calculations.

2. The use of an adaptive grid did not increase the com-
puter time, even though more computations are necessary.
This is due to improved convergence properties of the solu-
tion as well as use of fewer grid points (Anderson and Rai,
1982).

3. For two discretization schemes of the pseudo-advection
term examined, the upwinding scheme is superior to the cen-
tered difference, since the latter scheme exhibited oscillatory
behavior of the solution ahead of the wetting front.

4. Although the traditional method achieved a perfect mass
balance for all time step sizes, the SAG method demonstrated
that it progressively becomes more deteriorated as either the
time step size or the weighing parameter increases. There-
fore, although not considered in this study, the mass balance
can be used to dynamically adjust the time step size or the
weighting parameter.

5. The SAG method is an attractive alternative to the tradi-
tional fixed grid method for solving unsaturated flow and
other transport problems involving the propagation of a
sharp-front.
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