신경망에 의한 미지의 다중 수중 이동물체의 판별 및 추적

Classification and Tracking of Unknown Multiple Underwater Moving Objects Using Neural Networks

  • 발행 : 1999.06.01

초록

본 연구에서는 수중에서 진행하는 물체에서 전달되는 방사신호의 주파수스펙트럼으로부터 추출되는 토널과 주파수선과 같은 협대역 특징을 이용하여 미지의 다중 수중 이동물체를 효율적으로 판별하고 추적하기 위한 알고리즘을 제시한다. 제안한 알고리즘은 계층 구조의 신경망으로 구성된다. 조향 방위각에 대한 광대역에너지와 방위별 협대역 에너지를 검출하여 미지의 수중이동물체의 출현 방위각을 추정하고 이를 토대로 물체를 추적하는 기존의 기법으로는 물체들이 서로 인접하거나 교차하는 경우에 추적에 실패할 가능성이 높다. 그러나 제안한 알고리즘을 사용하여 실제 신호를 포함하는 시뮬레이션 시나리오에 대해 물체 추적 실험을 행한 결과, 특히 인접하거나 교차하는 물체들의 추적에 성공적인 성능을 나타내었다.

In this paper, we propose a multiple underwater object classification and tracking algorithm using the narrowband tonal and frequency line features extracted from the frequency spectrum of the acoustic signal. The general algorithm using the wideband and narrowband energy has a high tracking error when objects are close and cross each other. But the proposed algorithm shows a good tracking performance for the simulation scenarios generated by the real acoustic data.

키워드