A study on the subset averaged median methods for gaussian noise reduction

가우시안 잡음 제거를 위한 부분 집합 평균 메디안 방법에 관한 연구

  • 이용환 (우송공업대학 무역사무자동학과) ;
  • 박장춘 (건국대학교 컴퓨터공학과)
  • Published : 1999.06.01

Abstract

Image processing steps consist of image acquisition, pre-processing, region segmentation and recognition, and the images are easily corrupted by noise during the data transmission, data capture, and data processing. Impulse noise and gaussian noise are major noises, which can occur during the process. Many filters such as mean filter, median filter, weighted median filter, Cheikh filter, and Kyu-cheol Lee filter were proposed as spatial noise reduction filters so far. Many researches have been focused on the reduction of impulse noise, but comparatively the research in the reduction of gaussian noise has been neglected. For the reduction of gaussian noise, subset averaged median filter, using median information and subset average information of pixels in a window. was proposed. At this time, consider of the window size as 3$^{*}$3 pixel. The window is divided to 4 subsets consisted of 4 pixels. First of all, we calculate the average value of each subset, and then find the median value by sorting the average values and center pixel's value. In this paper, a better reduction of gaussian noise was proved. The proposed algorithms were implemented by ANSI C language on a Sun Ultra 2 for testing purposes and the effects and results of the filter in the various levels of noise and images were proposed by comparing the values of PSNR, MSE, and RMSE with the value of the other existing filtering methods.thods.

영상 처리는 영상 획득, 전처리, 영역화, 인식의 단계를 거치게 되며, 영상은 데이터 전송과정이나 테이터의 획득과정 및 데이터의 처리과정에서 잡음에 의해 쉽게 훼손된다. 이러한 과정에서 발생되는 잡음으로 대표적인 것이 임펄스 잡음과 가우시안 잡음이다. 이러한 잡음을 제거하는 기존의 필터링 방법들 중에는 공간적인 처리 기법으로 평균필터, 메디안필터, 가중필터, cheikh 필터 그리고 이규철 필터 등이 있었지만 많은 연구들이 임펄스 잡음의 제거에 치우쳐져 있고, 비교적 가우시안 잡음의 제거에 대한 연구는 미비한 편이다. 본 논문에서는 가우시안 잡음의 제거를 위해서는 부분 집합의 평균 정보와 메디안 방법을 이용한 부분 집합 평균 메디안 필터를 제시한다. 이 방법에서도 고려되는 윈도우의 크기는 3$^{*}$ 3를 적용하였다. 먼저 해당 윈도우내 픽셀을 중심픽셀 및 근접한 픽셀을 포함하여 4픽셀로 구성되는 4개의 부분집합으로 구성한 후, 각각의 평균을 구하고 여기서 구해진 4 부분집합의 평균값에 대한 정보와 중심 픽셀의 값과 함께 정렬을 하여 메디안 값을 구하는 방법이다. 이를 통해 가우시안을 기존의 방법보다 더 효율적으로 제거 할 수 있었다. 제시된 알고리즘은 Sun Ultra 2에서 ANSI C 언어를 사용하여 테스트되었으며, 기존의 필터 방법과의 제시된 필터 방법간의 PSNR, MSE, RMSE 값의 비교를 통해 비교 영상과 잡음들에서의 필터 성능과 효과를 제시하였다.

Keywords