Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 4 Issue 1
- /
- Pages.47-53
- /
- 1999
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
A Study on Automatic Classification System of Red Blood Cell for Pathological Diagnosis in Blood Digitial Image
혈액영상에서 병리진단을 위한 적혈구 세포의 자동분류에 관한 연구
Abstract
In medical field, the computer has been used in the automatic processing of data derived in hospital. the automation of diagonal devices, and processing of medical digital images. In this paper, we classify red blood cell into 16 class including normal cell to the automation of blood analysis to diagnose disease. First, using UNL Fourier and invariant moment algorithm, we extract features of red blood cell from blood cell image and then construct multi-layer backpropagation neural network to recognize. We proof that the system can give support to blood analyzer through blood sample analysis of 10 patients.
의학분야에서 컴퓨터는 병원에서 발생하는 각종 업무데이터의 전산화에서 진단을 위해 사용하는 검사 의료기기들의 자동화, 그리고, 각종 의학영상들을 디지털화하여 처리하는 단계까지 활발하게 활용되고 있는 실정이다. 이러한 시점에서 본 논문에서는 병원의 임상병리과에서 늘어나고 있는 혈액검사를 자동화하기 위한 것으로 혈구영상으로부터 적혈구를 분석하여 정상세포를 비롯한 비정상세포를 16부류로 나누어 분류하였다. 이를위해 UNL푸리에 특징과 불변 모멘트 알고리즘을 사용하여 세그먼트된 적혈구 영상으로부터 특징을 추출하고 이를 인식하기 위한 다단계 신경망을 구축하였다. 실제 임상에서 10명의 환자를 대상으로 실험한 결과 검사자가 참조가능 형태의 결과를 얻을 수 있었다.
Keywords