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1. INTRODUCTION

The casting of a propeller blade cannot meet
dimensional accuracy so that its surface must be
ground. However, it is one of the least favored jobs
because of dust, noise, vibration, and accidental
injury. So, a serial robot manipulator has been
applied to the grinding automation{1][2]. But its
application is limited to light-load grinding works
due to the poor stiffness of the manipulator. For
high stiffness, Stewart first introduced a parallel
manipulator, which also offers high accuracy and
fast dynamic performance. Hence many researchers
have studied different types of parallel manipulator
for various applications[3][4]. Generally, they
exhibit small workspace and complicated kinematics
and dynamics. This paper introduces a Hybrid
Robot Manipulator (HRM)[S] for propeller grin-
ding, which yields large workspace and simplicity
in kinematics. The HRM consists of a Serial
Mechanism(SM) and a Parallel Mechanism(PM).
The PM positioning a platform strengthens the
stiffness, while the SM orienting the end effector
enlarges the workspace.

The HRM is constructed and applied to propeller
grinding. The inverse/direct kinematics and the
Jacobian are implemented in real time position and
velocity control. While the velocity control is used
to measure an unknown geometric surface of a
propelller blade, the position control is applied to
grind the removal depth. This paper presents the
performance of the HRM for propeller grinding and
analyzed the force/moment acting at the passive and
active joints.

2. HYBRID ROBOT MANIPULATOR

The HRM is made up of the PM and SM as
shown in Fig. 1. The PM consists of three legs and
a central axis. For i=1,2,3, leg i is connected from
Bi to Pi through universal joints placed for
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Fig. 1. Hybrid robot manipulator.

located symmetrically 120° apart and 0,(i=0,3)
are the central points of the base and platform. As
shown in Fig. 2, the leg i is a six degrees-of-
freedom link train, which is composed of Uj - nj
- PRy - np - Us. The upper universal joint, Ui,
provides two degrees of freedom (4, and 6p),
while the prismatic and rotary joint, PRj, yields
another two degrees of freedom (4; and 4,).
Finally, two degrees of freedom ( ; and ;) are
added by the lower universal joint, Us. 6,;(=
1,2,4,5,6) are all passive joints but an active joint
65 shortens or extends the length of B,P; by a
Linear Actuator (LA). To increase the ranges for
#; and 6, an offset link is inserted in the upper
universal joint, Uj.

A central axis is located in the center to guide a
platform along the axis constraining to the rotary
motions ( §;, §,) and the sliding motion ( §;). The
SM is mounted at the platform and designed for the
wrist of the HRM producing the orientational
motions ( 8,, &5, 6). That is, A_4 and A_5 rotate
body 1 and body 2 by worm gears for motions 4,
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Fig. 2. Link train of leg i.

and 6, respectively, and A_6 rotates body-3 (end-{
effector) through a bevel gear for ;. The ranges of
9, and §; are 360° and that of @5 is within 270°
so that the SM can compensate for the workspace
which is limited by the PM. If the SM is included
in the link train of the central axis, it is a six-
degrees- of- freedom serial manipulator. That is, the
upper joints @,(i=1,2,3) position the SM and the
rotary actuators 6;(i = 4,5,6) orient the end effector.

3. INVERSE AND DIRECT KINEMATICS
FOR POSITION CONTROL
To derive a kinematic model, we assign
coordinates {i} to points O; for i=0,3,4 and 6 as
shown in Fig. 1, For a given set of the joint
displacements of a central axis, the position and
orientation of the end effector is

( %0405, °Re) = kin_center(6,,-+,65) (1)

where °0,0; is the position vector from {0} to
{6} and °Rg is a 3 X3 rotation matrix of {6} with
respect to {0}. The left superscript indicates the
coordinate which describes the position vector or
the rotation matrix. kin_ center is the direct kine-
matics of the central axis, which is identical to that
of a serial manipulator.

When the position and orientation of the end
effector is given, invkin_ center computes the joint
displacements, i.e,

(8, .., 06s) = Invkin_ center( °0,0q, "Rg)  (2)
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Here 8,(i=4,5,6) are directly rotated by the A i
but the passive joint ,(i=1,2,3) are indirectly
driven by the LA _i(i = 1,2,3). Now, we compute the
length of LA_i. From the closed loops OoB P03,
Q¢B,P,03; and OB;P;0; in the PM,

'BP;= °0,0,— "0,B;+ "Ry *0;P; (1=123)
3)

and the length of the LA iis 8= °B.P; || unless
the offset link is inserted. But they must be com-
puted by the inverse kinematics of the link train of
leg i as shown below.

05 = Invkin_leg_i( "B.P;) 4)

Consequently, (2)-(4) are the inverse kinematics
computing the active joint displacements.

Contrarily, the direct kinematics is to find the
position and orientation for a given set of active
joint displacements. ¢, (i=4,5,6) are directly mea-
sured from rotary actuators but §g;(i=1,23) are
determined by

0; = const_i(03, Oz, 05) &)

where const_i(:) are the GC equations of the PM.
In general, they are highly nonlinear equations with
multiple solutions because link trains form multiple
closed loops[6]. In the HRM, we can separate the
position from the orientation without any extra
sensor and induce the third order GC equation like
(5) which is lower than that of the Stewart
Platform. If the joints of the central axis are
measured with extra sensors, the direct kinematics
will be directly found by (1).

In order to derive the GC equations, we
investigate the GC motions in the PM. From (1),
kin__center(6,, 0,, 83) yields

00003= { 63802, - 861(6‘1')+ 63662),
(6)
CHI(Cﬁ'f' 636'(92)}
and from kin_leg_i (6,03, 0;) which is the
direct kinematics of leg i, we get

Ti}):={353912, —s8a(cp+ 03¢0,

cfa(cp+ 85c02)} (7)

Since °0,0, is located in the center of the
platform, and Bi and Pi are symmetrically 120°

apart, the relation of B.P; and °0,0; is

00,0,=1/3 2:_}‘ 'B.P; )

which represents three GC equations including nine



unknowns such as 4;, §; and 4, for i=1,273.

Thus we need six more GC equations as follows:
From the closed loops OpO;P;B; and OyO;P;B,,

'p,P, is determined by

0P1P2 =( OOOBg+ OBQPZ)‘( OOQBI+ 0B1P1)
= "Ry( *0sP,— 30,P)

Correspondingly, from the closed loops, OoOsP2B;
and 0o0sPsB;, 'P,P; is

0P2P3 :( OOOB3+ 0B3P3)_( 000B2+ Oszz)

- 0R3( 303P3_ 303P2) (IO)

To simplify the equations, the following variables
are defined as

Cb,' = 013 06,2, Sb,' = 6,3 86,2
ss; = (cp+cb) sy, cc;i= (cp+cbhy) cl,
where c(-)=cos(-) and s(-)=sin(-). Substituting

the variables into GC (8)-(10), we solve for them.
Then the definitions of ss; and c¢¢; yield

ch;= *\ ss?+ cct—cp (1

— b1l — pycly+ D3 05¢05+ ﬁ4801 + prshy + 1)603302 + prs6,150 + 98630(92301 + 0% -

cp\/ (— g1 cB;+ g,05c0, + 4 Hoc6%+ 44501 + 05585 1 qes6:1505 + g1s0% + qs 03605505 + g405¢0:50;, + c )+ c— 49%3 =0

- pl 0491 - l)z 002 + 1)3 636‘92 - f)4$(91 + p5802 + pg (93892 - ﬁ7861802 - ﬁg C0293501 + 6%“

12)

cp\/ (—q1¢0;+ q205¢0,+4 6§c0§ — 44501 — Gs5505— qes02505+ qq505 + qgB:c0,50, + 49 050,505+ c)+ c— =0

- 41)26‘62 + 1)3 00203 — b4891 - 21)693302 + 1)3530249§ -

cp\/ (— gy 01+ g2 03¢0, + 4 65c0% — 4450, + @550 — 550,505 + q150%+ g5 0205505 — ag €0y0550, + )+ c— 0%=0

where

1’1:%7’37’13, Dzz‘%‘VBTP, p3=2cb, py=V3cprs, Ds=cdrp, pg= 7, p7=%\/§7’37ﬂ ps=V3rg

a,=67prp, q2=28ch, Q4=4‘/§Cb7’3, gs= cprp, qe=2‘/§7’BTP, ar =175, as=4rp, (19=4\/§7’B

c=rot 5+ 2ct?, cy=4cp’+3r5+3r

ch; are always positive since -90°< @ p< 90°. So,
we can take only a positive square root for a
unique solution and derive three GC equations from
cb?+ sb?— 63 =0 as shown below. -

These are the third order simultaneous equations
to compute 8,(i=1,2,3) for a set of 9z(i=1,2,3).
However, the GC equations are not expressed in
explicit forms so that Newton's numerical method is
employed to finding the solutions. For the high rate
of convergence, approximate closed form solutions
are obtained from the simplified PM and used for
the initial values of the iterative computations.

Simplifying the PM with cp=0 and »,=0 induces
the GC equations. Now, we can find the closed
form solutions @, denoted by #? and rewrite the

(12) as

F[X]1=0 (13)
where X=[6,,6,,65]17. The classical Newton's
method for the solution yields

k1 k[ _OF(X) ]_1 k
xti=xt-[ELL ] Roxt) (14)
Once finding real roots X=[6,, 8,, 6517, we sub-
stitute §;(i=1,2,3) and 4,(i=4,5,6) into (1) to
compute the position and orientation of the end

| effector.

4. JACOBIAN MATRIX FOR VELOCITY

CONTROL

For a tool based control, a Jacobian matrix must
be derived to transform the velocity of the tool to
the actuators. Screw's theory(7) is applied to the
Stewart Platform to obtain a 6 X6 square Jacobian
matrix which transforms six components (linear and
rotary) of velocity of the platform to six actuators.
But the PM of the HRM is supported by three
actuators and a central axis. Hence, six components
of velocities can not be directly transformed to
three actuators. Here we use the motor algebra(8) to
get the formulations for velocity transformation in
the PM and SM, and combine them to find an
entire Jacobian. When the j-joint §; of i-link train
is actuated by a unit velocity, the linear and rotary
velocities of the point "o" in a platform are V and
£, respectively. Then the motor vector of j-joint of
i-link train is defined as

oMijz[Vx Vy Vz Qx Qy Qz]T (15)

where the left superscript indicates the point where
the velocities are inspected and the right subscripts
i and j represent the link train and the joint,
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Fig. 3. The HRM constructed for propeller grinding.

respectively. From the definition, the velocity of the
end effector is

vel_Os= 0, "My+ 0, "My+-+ 6% M5 (16)
where vel Og, which is a 6 X1 vector, represents
a linear and rotary velocity of the point O
assigned to the end effector. For j=1,2,---,6, O‘"’MC,»
is the motor of joint-j of central axis and §; is the
joint velocity. For a given vel_O; and %,
=[ %M, %M, - ®Mg), the joint velocities of

the central axis are obtained by

6= 7! Vel_0; (17)
where @=[6,6,]7 in which 6,=[4,, 8,, §;1"
and &,=[4,, &, §;]17. &, can be actively genera-
ted but @, must be driven by 43 of LA_i. To find

g5 for i=1,2,3, the output linear velocity of the
link train of leg i is computed by

[vel_Ply = 6,["M,]y
(18)
+ 0, [ "Ml v+ 65 [ "Mg)y

Correspondingly, [vel_P;]1, can be written as

[vel_Plv = 620 "Mily
(19)
+ 65 [ "Ml v+ 65 "M3) v
Since the point P; is located in the direction of
LA i, [vel_P;]y is projected to 65 by [ "Mzly,
ie.,

‘913 :[ piMa]IT/ [Uel_Pi] v (20)

With [ *7]y=[["Malv["Molv[ "Msly], combi-
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ning (17), (18) and (20) yields
[ 913 923 933 5’4 5’5 96] T=
AB %1 pel 0 21

where A and B are 6X12 and 12X 6 matrices,
respectively, as shown below:

[*MAT 000 000
000 ["Muly 000 = (),

A= 000 000 ["mg)}
O3X9 | I3><3ﬁ’

v () s

IR O 2 L (P

Therefore, an entire square Jacobian matrix is
J=A B %! (22)

which can directly transform the velocity of the tool
to actuators. If the offset links are short to be

neglected, [ “Mz], is the unit vector in the

. . —_— .
direction of B,P,, i.e.,

B,‘P,‘

Il B:P; I )

[ bi MB] vy =

This can remarkably reduce the computations but

produce the velocity errors if the offset links are
long.

5. POSITION AND VELOCITY CONTROL

FOR PROPELLER GRINDING

As shown in Fig. 3, the HRM is constructed for
propeller grinding. Before grinding the propeller
blade, we decide removal depths by measuring the
height of a casting blade. A touch probe is attached
to an end effector and the X-Y plane of the blade
is sliced into grids. A robot moves the touch probe
in Z- direction at the points of the grids until it
touches the surface. At a moment when the probe
touches the surface, the controller decelerates to
stop a robot and record current position data for
measuring the height. For these measurements, we
use a velocity control to move a robot in x-, y-, and
z- directions when the corresponding keys are



pressed. In the velocity control, the duration for
decelerating is short and consistent so that we can
get correct data. However, it must include many
computations for Jacobian, velocity mapping and
the direct kinematics. The efficient algorithms
derived in the previous sections are implemented in
a real time control.

The controller moves the robot until the probe
touches the surface. When the probe touches the
surface, the controller stops the robot and saves the
position data {x,y,z}. After these measurements are
conducted at all the points of the grid, the casting
surface is modeled by connecting the measured
data. The normal direction of the modeled surface
becomes an orientational data (Yaw, Pitch, Roll) in
which a robot approaches for grinding. By
comparing the measured dimension with the desired
one, we determine the removal depth. Then a
position control is used to grind the casting blade
surface by interpolating the measured data with
smooth curves. If the position and orientation of an
end effector is declared as

p_i={{X, Y, Z}, {Yaw, Pitch, Roll}}

The position control process is sequentially
performed. The robot moves along the path which
is made up of the data stored between the
start_point_list and the end point_list. For point to
point motion, only two data (p_start and p_end) are
stored but for the continuous motion, intermediate
data are interpolated by

p_i=p_start + (p_end-p_start) i/N
i=0,1,..N) 24)

N is the interpolating number, which is decided
from the grinding grade. The larger number N is,
the higher grade the grinding work is. According to
the p_i, active joint displacements are computed by
the inverse kinematics, and they are converted into
motor pulses for position commands to servo
motors. The position control is relatively simple but
cannot stop the robot until all the stored data are
executed. Hence it shouldn't be used for measuring
data, which requires to stop the robot at the
moment when the probe touches the surface.

6. RESULTS

The velocity control is executed to measure the
height of the point where a blade surface will be
ground. Deviations from the desired path are within
0.7mm convincing an allowable accuracy(l - 2mm)
for the propeller grinding. The probe stops at the

Fig. 4. Propeller blade surface modeling by measured
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Fig. 5. Grinding load for each process.

moment when it touches the blade surface. Table 1
presents the computational time of a PC Pentium-75
including the offset links. A total time of 4.88m-sec
is fast enough to be implemented in a real time
control but the burden of the computation is caused
by a Jacobian. However, we can reduce it to
3.0m-sec by neglecting an offset link since its
length is 20 mm, which is very short comparing
with the length of LA i (1038 - 1788mm). Due to
the rapid computation, the errors are decreased even
though the velocity etrror exists by ignoring the
offset link. After measuring the height of the
casting surface every 100mm which is distance
between grids, we modeled the surface as shown in
Fig. 4.

A position control is conducted for the grinding
work several times with the optimal selection of a
grinder, a speed, a load and a removal depth. Fig.
5 presents the currents provided at the grinder when
the surface was ground with lmm-removal depth.
The currents are extremely varied at the first
process but they become stable. This is caused by
the error in the model of the casting surface. For
the stable grinding, the surface must be modeled as
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Table 1. Computational time

Computation
Step Process Time(msec)
1 I“‘t)‘?}, V]ao'“e 0.05
Newton's Iteration
2 |F(X* D) < errvor 1.25
3 Direct Kinematics of Central Axis 021
kin__center( 6y, 6, .., ) ’
Jacobian
4 J= ABJ;! 227
Active joint velocities
> J+ Endvel 1.10
Total 4.88

accurate as possible and the small removal depth be
selected. Once the process is done, the accomplish-
ment is evaluated and the next process is followed.
When the grinding work is completed, the errors by
the position control are within 0.1mm, which makes
it possible to do fine grinding works.

7. CONCLUSION

This paper introduced a hybrid parallel-serial
robot manipulator with high stiffness and large
workspace for propeller grinding. For the develop-
ment of the robot system, inverse/ direct kinematics
and Jacobian are derived and implemented in a real
time control. By decoupling the motion of the PM
from that of the SM, the geometric constraint is
expressed by the third order simultaneous equation
which has a unique solution. The motor algebra is
applied to derive the formulations for the velocity
transformation in the link train of leg_i and the
central axis and they are combined to the entire
Jacobian matrix.

The velocity control is successfully performed to
measure the dimension of the propeller blade and
the position control is conducted to grind the
removal depth. The results show that the errors in
the measuring and grinding process are within 0.5
mm meeting an allowable accuracy of propeller
grinding. It is concluded that the hybrid parallel-
serial manipulator is suitable for the propeller
grinding and other machining works.
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