BFAAB RN =EA A4 A4T (99.12)

Efficient Parallel Algorithm for
Gram-Schmidt Method

Sun-Kyung Kim'

2o HY5H2 259 AEHE ATH A7IE P Gram Schmide LS, R Aje) B
DRAE o P B LuABPY So|, W) WRE Puel F7IAL ANES AT,
2 WNA S BANZHNH BE Z2gME Aol ue) FUT 8THES YuEe Wep,
oleiY nAFEE ATYUACKR Sfol, AFH el WHe o Lhe WAYAE A Bk

Abstract Several Iterative methods are considered, Gram-Schmidt algorithm for thin orthogonalization
and Lanczos methodfor a few extreme eigenvalues. For these methods, a variants of method is derived
for which only one synchronization point per one iteration is required; that is, one global corrmmication
in a message passing distributed-memory machine per one iteration is required. The variant is called
restructured method, and restructured method has better parallel properties to the conventional method.

1. Introduction

The Gram-Schmidt(GS) method can be used to
compute the thin QR factorization V=QR directly.
Two orthogonalizations are considered: Classical and
modified methods.[1,2] Modified method is more
stable compare to classical method These methods
have two basic types of operations: inner products
and the vector updates. The inner products require
global communication on a message passing system,
so these dominate the computation. However the
inner products in the conventional GS method cannot
be performed in parallel, because they are computed
in two different places every iteration.

Many important scientific and engineering problems
require the computation of a small number of
eigenvalues of large sparse symmetric matrices. The
most commonly used algorithm based upon projection
process to the Krylov subspaces for solving such an
eigenproblem is the Lanczos algorithm[3] In this
method the inner products camnot be performed in
parallel either, because of the same reason as the GS
method.

* Department of Computer Engineering, Taegu University

In order to use parallel computers in specific
applications, algorithms need to be developed and
mapped on to a parallel computer architecture.[45,6]
In this paper we restructure the conventional above
methods to improve parallel performance in the
orthogonalization of linearly independent vectors vl,
v2 ... vim. The outline of this paper is as follows. In
section 2, we review the basic properties of the
classical and modified GS methods and Lanczos
method, In section 3, we restructure the conventional
GS method and Lanczos algorithm for better
performance on parallel computers. In section 4,
Comparisons among the conventional, restructured
methods are discussed.

2. The Gram—Schmidt method
2.1 The classical GS method

We now discuss two altemative methods that can
be used to compute the thin QR factorization V=QR,
VEIR™™ directly. If rank(V)=m, then equation

Vp= glrikqi € span{qy, 43, ...q,}) can be solved

for qx ©

—~ 88 —

a, = (v~ 217';'&‘1:') [7w

Thus, we can think of gk as a unit 2-norm vector in
the direction of

Rp = Up— Zjlrikqi

where to enstre z, € span{agy,.... qe-1} "
we choose

_ T
Y= qi

i=1.k

This leads to the classical Gram-Schmidi(CGS)
algorithm for computing V=QRI[1] The classical
Gram-Schmidt method is as follows (Here, we use
the same array for V and Q)

Algorithm 1. The CGS method

1. compute (ql, ql)

1
2 = (q, Gx)z
3al=ql/rll
4 Forj=2tom
41 For k=1 to j-1
cormpute (gk, qj) ‘inner product

3
Y = (qn, 4;‘)

EndFor
42 For k=1 to j-1
9 = a -1k gk
EndFor

43 compute (g, qj) ‘inner product
1
ri = (g 4) Z
q =q /i
EndFor

In the j-th step of CGS, the jth columns of both Q
and R are generated.

2. 2 The modified GS method

Unfortunately, the CGS method has very poor
numerical properties in that there is typically a

severe loss of orthogonality among the computed gk
Interestingly, a rearrangement of the calculation,
known as modified Gram-Schmidt(MGS), yields a
much sounder computational procedure. In the k-th
step of MGS, the k-th colurmn of Qfdenoted by gk
and the k-th row of R(denoted byr{) are

determined where @ € IR™™ has orthonormal
columns and B, € R™™ is upper triangular.[1,2]

Algorithm 2. The MGS method

1. compute (ql, ql)

1
2. 7rm = (01‘ 41) 2
3ql=ql/rll
4, For j=2 to m
41 For ksjtom .
compute(qi-1, gk) :inner product

Ziere = (@521, a4 2
EndFor

42 For k=j to m
ok = gk - ai-1-r-1k
EndFor

4.3 compute(qj, aj) ‘inner product
1
vy = (4. a)°
@ =d /1
EndFor
2. 3 The Lanczos method

Many important scientific and engineering problems
require the computation of a small number of
eigenvalues of large sparse symmetric matrices. The
most commonly used algorithms based upon
projection process to the Krylov subspaces for
solving such an eigenproblem are the Lanczos
algorithm. The basic Lanczos procedure can be
viewed as the Gram-Schmidt orthogonalization of the
Krylov subspace basis {gq1,Aq,...,A ')
Furthermore, for each j, T;= Q;TAQ; is the
orthogonal projection of A onto the subspace spanned
by the Lanczos vectors @;=4a),...,q; such that

Q,7Q;=1I, where I is the identity matrix of order

89

j. The eigenvalues of the Lanczos matrices 7T are
called Ritz values of A in Q sub j. For many
matrices and for relatively smail j, several of the
extreme eigenvalues of A, that is several of the
algebraically-largest or algebraically~smallest of the
cigenvalues of A, are well approximated by
eigenvalues of the corresponding Lanczos matrices.[3]
The standard Lanczos algorithm is as follows:

Algorithm 3. The Lanczos method

Choose ¢ with ligll;=1, gy=0
For j=1 until Convergence Do
1. compute and store Ag;
2. compute (Ag;,g;) ‘inner product
a;=(Ag;,q)
3 ri=Aq;—Bi-19i-1—a; q;
4, compute (r;,7;) ‘inner product

3;=V (7’;, 7’,')
5 gi1=7;l B
EndFor

3. The restructured method

3.1 Restructuring GS method

The classical GS algorithm has two basic types of
operations: inner products and the vector updates. In
algorithm 1,2 the imner products cannot be performed
in parallel. The algorithms based on restructuring the
conventional GS algorithms are introduced here. The
restructured algorithm decreases the global
commumication costs and thus get the better
performance in a distributed-memory message
passing systems. For shared memory systems with a
few processors, processor synchronization is fast but
accessing data from the main memory may be slow.
Thus, the data localities of the basic operation parts
of the GS algorithm determine the actual execution
time of the algorithm. In algorithm 1, step 4.1 must
be completed before the rest of the computations in
the same step start. Also in algorithm 2,

Synchronization points are two, that is, step 41 and
step 4.3. This forces double accesses of vector g
from the main memory at each iteration. Algorithm
45 are varants of algorithm 12 for which are
derived for which only one synchronization point per
one iteration is required. In the restructured method,
the inner products needed for one iteration can be
performed simultaneously. so the algorithm 45 are
more suitable for parallel processing.

Algorithm 4. The restructured CGS algorithm

1. For j=1 to m-1
1.1 compute(qj, qi)
1.2 For k=1 to j :all inner products
compute (gk, gj+1)
EndFor

1
13 r; = (g; ay) g
.+l = (d, gi+D) / 1jj
l4 Fork=1toj
kj+l = (gk, qi+l)
EndFor
16d = q /i
1.7 For k=1 to j
qi+l = gi+l - gk - rkj+l
EndFor
EndFor
2. compute(gm, gm)

Ym = (G, @) ®

gm = gm / rmm

Algorithm 5. The restructured MGS algorithm

1. For j=1 to m-1
1.1 For k=j to m :all inner products
compute(qi, gk)
EndFor

1
12 7; = (¢ q)°
1.3. For k=j+1 to m
compute(qj, gk)
ik = (aj, qk)/dj
EndFor
l4dj = q /1j

—-90 -

15 For k=j+1 to m
ak = gk - g -1k
EndFor
EndFor
2. compute(am, qm)

Vom = (Qm, Q)
gm = gm / rmm

The orthogonal vectors ¢; in Algorithm 45 are
generated in the same way as the conventional GS
method. Computationally the difference between
Algorithm 12 and 4,5 is in the computation of R. We
need more extra scalar operations to campute 7, 7
in the algorithm 4,5. However, Algarithm 45 seems
more promising than Algorithm 1,2 for parallel
processing because the inner products required to
advance each iteration <can be executed
simultaneously. Also, one memory sweep through the
data is required to complete each iteration allowing
better management of slower memories in a memory
hierarchy computer.

3.2 The restructured Lanczos method

In the algorithms 3, the inner products cannot be
performed in parallel. Algorithms based on
restructuring the standard Lanczos algorithms to
decrease the global commumication cost and to get
better performance in distributed-memory message
passing systems, is introduced here. For shared
memory systems with few processors, processor
synchronization is fast but accessing data from the
main memory may be slow. Thus the data localities
of the three basic operation parts of the Lanczos
algorithm determine the actual time complexity of the
algorithm. The data locality of the restructured
Lanczos algorithms is better than that of the
algorithm 3. In algorithm 3, step 2 and step 5 are
two synchronization points. This forces double access
of vectors q, Ag, r from the main memory at each
symmetric Lanczos iteration.

Algorithm 6. The
Algorithm

restructured Lanczos

Choose w ryith 7y#0, ¢u=0
For j=0 until Convergence Do
1. compute and store Ar;

2 compute (7, 7). (Arj, 7))
: all inner products
/9j=V (7’,', 7’;’)
@i =(Ar;, 7)[(7;,7)
3 gj+1 = 7ilB
4 7i41=Ar;/Bi— B~ @j418;41
EndFor

Algorithm 6 is a variant of algorithm 3 and the
orthonormal vectors ¢; are generated in the same
way as the standard Lanczos method.
Computationally the difference between Algorithm 3
and 6 is the computation of @;, 7;. The computation
of B; is the same in algorithms 3 and 6. Loss of
orthogonality from a very small residual vector is
unavoidable in any of the algorithms. We need one
more vector operation to compute 7; in Algorithm 6.
Algorithm 6 seems more promising for parallel
processing because the two inner products required
to advance each iteraion can be executed
sirmultaneously. Also, one memory sweep through the
data is required to complete each iteration allowing
better management of slower memories.

If reorthogonalization is used in algorithms 3 and 6,
another synchronization point is required in each
algorithm, But it does not affect the fact that two
inner products to compute @; B; can be executed
simultaneously in algorithm 6.

4. Comparisons of methods

In the algorithms 1245 the inner products are
m(m+1)/2, the vector updates are m(2m-1)/2, and
the storage requirements are m, that is, these
algorithms require same number of the vector
operations and same amount of storage. In the GS

91

<Table 1> Comparison of conventional method & restructured method.

Restructred Restructured
CGS cGS MGS MGS
Synchronization _ _
points 2m-1 m 2m-1 m
Scalar m(m+1) (m+2)(m+1) m(m+1) 2
products 2 2 2 m
<Table 2>. Time performance(msec) per dot product.

P 4 8 16 32 64
Conventional 27.454 15.929 11.050 9.729 11.020
Restructured 19.331 105 7.421 6.601 7.908

<Table 3>. Dot product rate in Lanczos algorithm.

P 4 8 16 32 64
Conventional 28% 30% 37% 48% 64%
Restructured 23% 24% 30% 41% 59%

A ® dot product speedup

M dot product rate
15 +
@
1+ -
0.5+
4 8 16 32 ; .
The processor size

Figure 1. dot product speedup for standard/restructured

- 02 —

method(algorithms 1,2) m(m+1)/2 inner products
should be separately repeated 2m-1 times and so
communication time rate is high for these QR
factorization processes. Algorithms 45 are variant of
algorithms 1,2, algorithm 45 are derived for which
only one synchronization point per one iteration is
required. In the restructured method, the inner
products needed for one iteration can be performed
simultaneously. so the algorithm 45 is more suitable
for parallel processing compare to algorithm 1,2,

Table 1 shows the global communications during
m iterations of the corresponding conventional and
restructured GS method. During the procedure of the
conventional GS algorithm in the section 2, inner
products per one iteration should be separately
computed. However, in the restructured algorithm all
inner products needed for one iteration can be
performed simultanecusly. So the computation time
and communication time necessary for inner products
are reduced by a factor of 1/2 roughly compared to
the conventional method.

On message passing system like
Hypercube, IBM SP, lots of times are needed for
global commumnication, which in tum reduces the
efficiency of the parallel system.
Table 2 shows the average time performance per one
inner product in case that two inner products are
performed seperately or simultanecusly on hypercube
machine. Table 3 shows the rate of inner product in
the algorithm 36. So sirmultaneous computation of
inner products is much better pardllel properties.
Figure 1 shows the speedup performance of dot
product in the restructured algorithm.

5. Conclusions

As the number of the processors involved in the
parallel system is increased, the relative importance
of the communication cost grows. In this paper, we
proposed the restructured Gram-Schmidt method, and
the new method is suitable to reduce the
communication cost. The restructured method
orthonormalizes the vectors in the same way as the
conventional method, but the new one is more
effective in the parallel system because a large
amount of the inmer products can be done at once.

This process can reduce the data communication time
in a message passing system. The parallel algorithm
also helps to reduce the memory latency time in
shared memory systems by reducing the
synchronization point showing a better data locality.

References

[11 G. H Golub, C. F. Van Loan, MATRIX
Computations, Johns Hopkins University Press.
(1996)

[21 James W. Demmel, Applied Numerical Linear
Algebra, the Society for Industrial and Applied
Mathematics press. (1997)

[31 Jane K. Cullum and Raph A. Willoughby,
Lanczos Algorithms for Large Symmetric
Eigenvalues Computation, Birkhauser Boston, Inc.
(1985).

[4] Sun Kyung Kim and A. T. Chronopouios, "A
Class of Lanczos Algorithms Implemented on
Parallel Computers”, Parallel Computing 17 (1991)
pp 763-778.

[5] Pontus Matstoms, “Parallel sparse QR
factorization on shared memory architectures”,
Parallel Computing 21 (1995) 473-486

[6] Paul E. Saylor, "Leapfrog Variants of HRerative
Methods for Linear Algebraic Equations”, Joumal

of Computational and Applied Mathematics 24
(1988) pp 169-193.
rAR N |
1979. 2 OlzldX|HEtm 4&tn}
3
1982. 2 sh=RapEpriad Mokt

2 ERUAAY

University of Minnesota,
Computer Science &}
At

olsichstm MAKSiD W U ZHAK1982.3-1984.2)
HAYCHSIE MM ZHAK1984.3-1984.8)
University of Mnnesota, Computer Science

(1988.3-1991.7)

TS E YRS LIER L DN(190.3-34%)

1991, 7

=uw

93

