대화체 문장 번역을 위한 토큰기반 변환중심 한일 기계번역

A Token Based Transfer Driven Koran -Japanese Machine Translation for Translating the Spoken Sentences

  • 양승원 (우석대학교 정보통신컴퓨터공학부)
  • 발행 : 1999.12.01

초록

본 논문에서는 음성언어 자동 통역시스템의 일부 모듈로 구현한 한일 기계번역 시스템을 소개하였다. 이 번역시스템은 예제중심 기계번역(EBMT)에 기초를 둔 변환중심 기계번역(TDMT) 방법을 기반으로 구현하였다. 본 시스템에서는 토큰(TOKEN)이라는 새로운 번역단위를 정의하여 사용하였다. 토큰단위의 번역방법을 사용함으로써 한국어 문장의 매우 비 정형적인 점을 해결하고 번역의 질을 높일 수 있다. 본 시스템의 구문분석 단계에서는 대역어를 선정하기에 적합한 정도까지의 의존트리를 생성하는 간이파싱만을 함으로써 필요없는 노력을 경감시켰다. 대역어 사전은 한국전자통신 연구원이 수집한 음성 데이터베이스로부터 추출한 말뭉치를 사용해 구성하였다. 구현한 시스템은 여행 계획영역에서 수집된 600 발화 안의 문장을 대상으로 시험하였는데 제한된 환경에서 87%, 아무런 제약이 없는 환경에서는 71%의 성공률을 보였다.

This paper introduce a Koran-Japanese machine translation system which is a module in the spoken language interpreting system It is implemented based on the TDMT(Transfre Driven Machine Translation). We define a new unit of translation so called TOKEN. The TOKEN-based translation method resolves nonstructural feature in Korean sentences and increases the quaity of translating results. In our system, we get rid of useless effort for traditional parsing by performing semi-parsing. The semi-parser makes the dependency tree which has minimum information needed generating module. We constructed the generation dictionaries by using the corpus obtained from ETRI spoken language database. Our system was tested with 600 utterances which is collected from travel planning domain The success-ratio of our system is 87% on restricted testing environment and 71% on unrestricted testing environment.

키워드