FIAGA RGN =EA A4A H23 (99.6)

Implementation of Digital Filters on
Pipelined Processor with Multiple
Accumulators and Internal
Datapaths’

Chun-Pyo Hong’

8 % 2 =RL &HolTEY E29 1d2XE EAE XY HE 97 79 7] B R bl
Eu2g JH golzelel Z2 AN Moz FHEY = gl 7Y il rigdgith ojs} T
£ =RolMe 8o 6P ZaAXE olfdtd UEERANE TAURE HE ueld 2AEH Ne
st en, A7 dake 939 A 7IRZE 29K . AA, 4§ DSP Z24x9] 7} fAME n
el 47194 3 7Qe) iR oA g ZiAE Solze]l ZaAMe] ndg AASAT. B4, Folx
TZE 7HAE Azdd £301FEY E24 a2 ¥Ad tAd UHE 7Y & o AL 5 9
T a5 2 39d 2AEY 2ds FHon, A%z FoF o] G4/ Ed ugs E J
Ao} 2AEY 71YS AP mARo s & AFedA e AASHUE o8 B ¢ dA"
gejol digle] A AlRS & 3 difEe BF oj@Hes dg 7 e Hio] UE FU1E WA
Fe 2AEY e 48 5 USE gUsiink

Abstract This paper presents a set of techniques to automatically find rate optimal or near rate
optimal implementations of shift-invariant flow graphs on pipelined processor, in which pipeline
processor has multiple accurmuilators and internal datapaths. In such case, the problem to be addressed is
the scheduling of rmultiple instruction strearms which control all of the pipeline stages. The goal of an
automatic scheduler in this context is to rearrange the order of instructions such that they are executed
with minimum iteration period between successive iteration of defining flow graphs. The scheduling
algorithm described in this paper also focuses on the problem of removing the hazards due to
inter-instruction dependencies.

1. Introduction

In many Digital Signal Processing (DSP)
applications, such as real time processing of wide-band
or multidimensional signals, processors with high speed
computing capability are required. Recent improvements
in VLSI technology have now lead to single chip
programmable Digital Signal Processors of
unprecedented speed and computing capability, and
most of those processors are deeply pipelined{2][3][4].

* School of Computer and Information Engineering, Taegu University
t The author wish to acknowledge the financial support of Korea
Research Foundation made in the program year of 1997

In some cases, the use of pipelining can provide the
required computing power, since the inherent nature of
DSP to repeat the same computation to each frame of
the input stream. However, if there is recursion in the
problems, pipelining can degrade the performance as it
may alter the computation intended[l]. This paper
presents a set of techniques to automatically find an
implementations of digital filters on pipelined processor,
in which digital filters are represented by recursive
Shift-Invariant Flow Graphs (SIFG)[6] and pipelined
processor has multiple accumulators and internal
datapaths.

For a linear pipelined processor, author has
previously described and demonstrated a compiler[5). In

— 44 —

previous research, we assumed that the pipelined
processor consist of two units: Instruction Unit (I-unit)
and Execution Unit (E-unit). For DSP applications,
different forms of pipelining can be structured
depending on the applications. In most real systems,
the structure of the E-unit is system dependent and
usage dependent. This paper proposes some different
forms of the E-unit for DSP applications, and
investigates the effects of different forms of pipelining.
The E-unit proposed in this research has muiltiple
accumuilators and internal datapaths.

This paper also describes an instruction scheduling
algorithm for the implementation of recursive SIFG on
the new pipelined E-unit. Since the operand fetch from
accumulator or normalizer decreases the latency
between operations, the internal datapaths can decrease
the achievable iteration period bound. As a result, the
chance of implementation with shorter iteration period
increases. However, from the view point of complexity,
the internal datapaths and the muiltiple accumulators
make the instruction scheduling problem more complex.
The scheduler described in this paper also focuses on
the problem of removing the hazards due to
inter-instruction dependencies.

2. Pipelined Processor with Multiple
Accumulators and Intemal Datapaths

The architecture of basic functional unit is
determined by the nature of the algorithms that
characterize the task to be performed. By considering
the characteristics of SIFGs, three kinds of operations,
ie, multiplication, addition, and multiplication/addition
should be performed in an efficient way. <Figure 1>
illustrates the structure of a pipelined E-unit which is
optimized for these three arithmetic operations.

As described in <Figure 1>, the E-unit is consists
of five modules, ie, Operand Fetch (OF), Multiplier
(MUL), Adder (ADD), Normalizer (NOM), and Store
Result (STR). In this unit, it is assumed that the MUL
module consists of m stages, the ADD module consists
of n stages, and the remaining three modules consist
of a single stage apiece. Although each module clearly
can either more or less be partitioned, the partitioning
must be considered together with the instruction

scheduling.

<Figure 1> Structure of (m+n+3) stages Pipelined
E-unit i

OP, . a;
B an
1
W0, | (m)) M MR (1)
op A MUL x| ADD : NOM STR
3m b M) P
Accumulato
a. Set
ME
MORY] 0P,

A=08 or OP,

Y=(OR, xOP,) + OP_ or
B=OP,,,, of a,- 2 3m m

(OP,xOP,) +a, or
X=(08 x OP,,) or (OP,x OP,) + O or
{OP, x OP,,) or (OP,xOP,} +a, or
a, a ta or
a;+0”,

In the E-unit, regardless of the specified operations,
three operands are fed from memory, accumulator, or
NOM. Then, the multiply/add operation is performed on
the operands in the MUL and the ADD modules, and
the result is latched in the accummilator. In the NOM
module, the accumulator value is rounded to provide
the correct data size to match with the size of data
memory, After normalization, the result of the specified
operation is stored into memory or accumulator.

The E-unit has two inherent characteristics. First,
since the basic function of E~unit is the multiply/add
operation, there are some redundant steps for the other
operations. The ADD module is a redundant step for
the multiply operation, and the MUL module is a
redundant step for the add operation. However, there is
no loss of efficiency as long as the throughput of the
ADD and the MUL is equals to the throughput of
control logic and memory.

Second, three different arithmetic operations are
performed in the same way using the same resources.
This is achieved by simply providing a special
constant (one or zero) for a specific operand. Since
these operands are simple constants, in some case,
these constants can be stored in a different mermry
unit. In addition, in the typical DSP applications such

.45

as FFT or digital filters, one of the two operands to
the multiplication is a constant (or coefficients). Thus
this constant value also can be stored in a different
memory unit.

The intenal datapath from accurnulator to ADD
provides a function for a fast multiply and accumulate
operation. With the addition of this data path, even if
the ADD is not modified, the ADD can function as
two different modes. If the operand B for the ADD
comes from the memory OPlm, then the ADD function
as a normal add mode. In contrast, if the operand B
for the ADD comes from the accumulator ai, then the
ADD function as an accurmulate mode.

The intemal data path from NOM to MUL is a
kind of short-circuiting. Instead of storing the
normalized data into memory, a copy of data to be
stored is directly fed to an operand for the MUL
(OP3f). This data path can save the time for store
result and operand fetch. As an example, AT&T's
DSP32C[4] which uses deep pipelining employs this
type of intemal datapath.

In addition to the intermnal data path, the E-unit has
multiple accurmiators. By employing mudtiple
accurmlators, it provides more flexibility in choosing
operands and storing results. With this pipelined
E-unit, if several muiltiply/accumulate instructions are
to be executed one after the other, then the
instructions are pipelined such that one instruction
completes in every pipeline clock cycle. Sometimes,
both operands for the ADD can come from different
accurnulators. In such a case, the output of the ADD
becomes ai + aj. In addition, in the E-unit of <Figure
1>, to guarantee conflict free accumulator allocation,
the minimum (m*n+2) accurmulators are required

3. Instruction Scheduling on the Pipelined
E-unit

In the E—unit of <Figure 1>, although the additional
control circuitry are required, it can achieve a faster
solution. Even if the shorter computational latency
between operations does not always guarantee the
shorter iteration period, it is clear that the shorter
computational latency give a greater probability of
achieving a shorter iteration period.

3.1 Atomic Operations Set

In the E-unit of <Figure 1>, the multiply/add
operation can be executed in a single instruction. Since
the atomic operation is defined as an operation that
can be scheduled independently in the specified target
architecture, the multiply/add operation is considered as
an atomic operation. Thus, with the E-unit of <Figure
1>, the new atomic operations set is defined as: 1)
multiply; 2) add; and 3) multiply/add.

Based on the new atomic operations set, the
defining DSP algorithms can be specified as a SIFG
which contains three types of atomic operation. If the
defining algorithm is originally defined as a SIFG
which does not include the multiply/add operation as
an atomic operation, then a new SIFG can be
constructed by combining the rmultiply and the add into
the multiply/add. In such a case, the muitiply and the
add can be combined in two different ways. In
addition, depending on the original structure,

<Figure 2> Two multiply/add nodes which have
different implicit connection. (a) case 1: predecessor is
connected to add node. (b) case 2 predecessor is

connected to multiply node.
Y; v,
@ m
v, =
(b)

Vi
Vj a
-G
Yi
(a)

<Figure 3> Wave filter which has multiply/add node
as an atomic operation.

the computational latency between two nodes which
include multiply/add node is different. <Figure 2>

— 46 —

represents two different types of muiltiply/add node
which is comnected in different way implicitly. In
<Figure 2>, depending on the cormection with the
predecessor vi, the computational latency between the
node vi and the muiltiply/add node will be different. By
applying this rule, the wave filter referenced in
previous research(4] can be transformed to an equivalet
SIFG described in Figure 3

32 Pipeline lteration Period Bound

The iteration period bound is a function of the
computational time delay of node in defining SIFG.
With the pipelined E-unit of <Figure 1>, the
computational latency between two operations is
different depending on the operation types. This is
because the operands for the MUL can be fetched
from the NOM or Memory, and because the operands
for the ADD can be fetched from Accumulator (s) or
Memory.<Figure 4>

<Figure 4> Minimum achievable computational
latencies between two operations with pipelined
E-unit in <Figure 1>

Data Path Latency

n

m+n+1

m+n+1

m+n+1

m+n+1

m+n+1

OO0l

m+n+1

®

summmarizes the minimum achievable computational
latency between possible combinations of two
operations.

As described in <Figure 4>, since the computational
latency between two operations is different depending
on the operation types, the pipeline iteration period
bound is computed by equation (1).

max . L,
=
To= petops | - | W

where L,=2 ijep by is the sum of
computational latency between two arithmetic operation
nodes vi and vi around the loop p, and np is the
number of ideal delays in loop p. In equation (1), lij is
obtained directly from <Figure 4>, If there is one ar
more ideal delays between vi and vj, then compute Lj
by removing ideal delay.

3.3 Static Scheduling Model

With the pipelined E-unit of <Figure 1>, the operands
can be fetched from three different locations, ie,
accurmulator, normalizer, and memory. If both operands
are fetched from accurmulators, then OF and MUL
modules are not used. In such a case, the usage of
each pipeline stage is non—uniform Consider the
implementation of the critical loop of wave filter in
<Figure 3> on pipelined E-unit of <Figure 1>
<Figure 5> illustrates non-uniform usage of each
pipeline stage. In this example, we assumed that m =
landn =1

<Figure 5> Non-uniform usage of each pipeline stage

Space
STR 3 2(4}7 8le6
NOM 3 2|47 86
ADD 3 214(7 8|6
MUL 3 2 7 8 £
OF 3 2 7 8
001 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

As illustrated in <Figure 5>, the usage of each
pipeline stage is non-uniform. Thus each pipeline
stages must be scheduled independently depending on

~ 47 ~-

the available operands. However independent scheduling
of each pipeline stage requires enormous computation
costs. In this research, instead of scheduling each
pipeline stage independently, a simple scheduling model
is applied.

In <Figure 5>, although some pipeline stages are
not used at certain times, no other operations require
the usage of the same pipeline stages at the same
time. In other words, no other operations require the
usage of the OF at time 4 and 9 Similarly no other
operations require the usage of the MUL at time 5 and
10. In such a case, arbitrary modifications can be made
for shaded areas in <Figure 5>. In such a case, if the
first stage of E-unit is scheduled without conflicts,
then remaining four stages can be automatically
scheduled without any conflicts. More generally, for
(m*n+3) stages of E-umit, instead of scheduling each
pipeline stage independently, the problem is simplified
to schedule only the first stage explicitly. <Figure 6>
represents an equivalent representation of the schedule
of <Figure 5> in the static scheduling model

<Figure 6> Equivalent representation of the schedule
of Figure 5 in static scheduling model.

[[efefr[[fefel TLT 1]

2 3 1011 12 13 14 15

o, [7]
0 1
time

If the number of pipeline stages of the MUL and
the ADD is fixed, then the pipeline iteration period is
bounded in two different way. If TOp is greater than
or equal to the total number of arithmetic operation
nodes in defining SIFG, then this system is flow graph
dependent. In contrast, if TOp is less than the total
number of arithmetic operation nodes in defining SIFG,
then this system is resource dependent. Consequently,
if the mumber of pipeline stages of the MUL and the
ADD is fixed, then the pipeline iteration period bound
is determined by equation (2).

T ={ T()p if TQpZ(V[}
0» [V otherwise

where V is the cardinality of arithmetic operation

@

nodes in defining SIFG.

34 Determination of Static Schedule

The objective of instruction scheduling is to find an
implementation which has minimumn iteration period.
The scheduling algorithm is an iterative procedure and
is divided into two steps.

» Step 1: SIFG Analysis

As the first step, the scheduler does an initial analysis
of the SIFG to find the bounds which the scheduler
will attempt to achieve. Then the next step is to
decide the loop scheduling order, that is the order of
each loop to be integrated into the final operation
schedule. The loop scheduling order is determined
depending on the slack time of each loop that is
specified in equation (3).

ts(ﬁ)=in0p_Lp (3)

where ts(p) is the slack time of loop p, np is the
number of ideal delays around loop p, TOp is the
pipeline iteration period bound, and Lp is the sum of
computational latency between two arithmetic operation
nodes vi and vj around the loop p. Although Lp may
be different depending on the implementation, the slack
time is computed based on minimum achievable latency
between operations.

» Step 2' Constrained Depth-First Search
As the second step, the scheduler finds an operation
schedule for an implementation of the given SIFG onto
the static scheduling model. The basic scheduling
methodology is to construct a deterministic schedule by
a constrained enumeration of all possible schedules that
meet the precedence relation of the given SIFG. The
constrained enumeration of possible schedules is
achieved through the depth-first search operation.
During the depth-first search, the scheduler
enumerates all of the possible schedules that meet the
precedence constraints of the given SIFG and have
iteration periods consistent with the pipeline iteration
period bound of the given SIFG. However the search
space will be extremely large if all the paths on the
depth-first search tree are to be considered for every
incremental depth. To reduce the search space, a set of

— 48—

constraints such as pipeline iteration period bound, data
precedence constraint, pipeline latency constraint
described in <Figure 4>, and equivalence class
constraint[5) is applied for the depth-first search.
<Figure 7> is an example of implementation of the
wave filter.

4. Discussion

In this research, a new pipelined E-unit was
proposed, and the effects of new pipelined E-unit to
instruction scheduling were investigated. It was shown
that the new pipelined E-unit is suitable for
sum-of-products, which is one of key operation for
DSP algorithms.

The instruction scheduling methodology for the new
pipelined E-unit has the same features as the
scheduling algorithm described in previous research{5].
One major difference is that some additional
constraints are applied during the depth-first search. It
was also shown that, due to the feedback paths and
multiple accurmulators, the new pipelined E—unit can
achieve a shorter iteration period. However, it reguires
a higher computational cost since the depth-first
search requires a larger search space.

<Figure 7> Implementation of wave filter in <Figure
3> on pipelined E-unit in <Figure 1>. (a) Loop

scheduling order. (b) Four step operations for
constructing the final schedule.

Loop Lo | Slack Time [Scheduling Order
3-2-4-7-8-6-5 10 3 1
1-10-7-8-9 8 5 2
3-2~-4-7-6-5 7 6 3
3—-4-7-8-6-5 7 6 4
11-10-8-9 5 8 5
10-7-8-9 5 8 [
15-14-17-16 5 8 7
3-4~7-6-5 4 g 8
3-2~1 4 9 9
10-8-9 2 i1 10
15-17-16 2 1 1
21 1 12 12

(a)
sopt o [[efefef [Joe[[[][]
[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sopz [o|n] [zf[wfel7] | Jofef | |]]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

spa [z [l o[[s] T [1]
o 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

st [2 [w[[7] [s][] T]

8 9 10 11 12 13 14 15

(b)

References

[1] P. Dewilde, E. Deprettere, and R. Nouta, “‘Parallel
and Pipelined VLSI Implementation of Signal
Processing Algorithms,” VLS| and Modem Signat
Processing, S.Y. Kung, H.J. Whitehouse, and T.
Kailath, editors, Prentice—Hall Press, pp. 257-276,
1985.

[2] R. Emst, “Long Pipelines in Single-Chip Digital
Signal Processors — Concepts and Case Study,”
IEEE Trans. on Circuits and Systems, Vol. 38, No.1,

— 49 —

pp. 100-108, 1991.

[3] EA. Lee, "Programmable DSP Architectures: Part
I,” IEEE ASSP Magazine, Oct. 1968.

[4] EA. Lee, "Programmable DSP Architectures: Part
II,” {EEE ASSP Magazine, Jan. 1989.

[5] C.P. Hong, "An Optimal Implementation of Digital
Filters on Multiple Pipelined Processors,” Proc. on
infernational Workshop on Intelligent Signal
Processing and Communication, pp. 345-350, Seoul,
Korea, Oct. 1994.

[6] DA. Schwartz and T. P. Bamwell i
“Cyclo-Static Multiprocessor Scheduling for the
Optima!l Realization of Shift-Invariant Flow Graphs,”
Proc. of Intemational Conference on Acoustics,
Speech, and Signal Processing, pp. 1384-1387, 1985.

-50

