An Improved 2-D Moment Algorithm for Pattern Classification

  • 발행 : 1999.06.01

초록

화상 데이터의 특성을 표현하는데 적합한 깁스분포를 바탕으로 특징벡터를 추출하여 패턴을 분류하는 새로운 알고리즘을 제안하였다. 특징벡터는 화상의 크기, 위치, 회전에 대해서 불변이며 접영에 대해서도 덜 민감한 특징을 갖는 2차원 모멘트들의 원소로 만들어진다. 알고리즘은 공간정보를 갖는 2차원 모멘트를 이용하여 특징벡터를 추출하는 과정과 거리함수를 이용하여 패턴을 분류하는 과정으로 구축하였다. 특징벡터는 깁스분포의 묘수를 추정하여 2차원 조건부 모멘트를 추출하여 구성한다. 패턴 분류 과정은 추출된 특징벡터로부터 제안된 판별거리함수를 계산하여 여러 원형 패턴 가운데 최소거리를 산출한 미지의 패턴을 원형패턴으로 분류한다. 제안된 방법의 성능을 검증하기 위하여 대문자와 소문자 52자로 구성된 훈련 데이터를 만들어 SUN ULTRA 10 워크스테이션에서 실험을 한 결과 98%이상의 분류성능이 있음을 밝혔다.

We propose a new algorithm for pattern classification by extracting feature vectors based on Gibbs distributions which are well suited for representing the characteristic of an images. The extracted feature vectors are comprised of 2-D moments which are invariant under translation rotation, and scale of the image less sensitive to noise. This implementation contains two puts: feature extraction and pattern classification First of all, we extract feature vector which consists of an improved 2-D moments on the basis of estimated Gibbs distribution Next, in the classification phase the minimization of the discrimination cost function for a specific pattern determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on SUN ULTRA 10 Workstation Experiment results reveal that the proposed scheme had high classification rate over 98%.

키워드