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1. INTRODUCTION

After the Just-In-Time (JIT) production system was introduced, the problem of
minimizing the function of both earliness and tardiness in a job shop has received
a great attentions because one of the concepts of JIT production system is that
the parts (components) are supplied at the needed time point. Baker and Scudder
[2], Kanet [7], and Sidney [13] decribed why it is desirable to reduce the earliness
and tardiness simultanenously.

Baker and Scudder [2] surveyed various kinds of objective functions related to
both earliness and tardiness in a single machine with a common due date. The
problem of minimizing mean squared deviation (MSD) from a common due date,
instead of mean absolute deviation (MAD), is attacked in this paper because large
deviations from the common due date usually incur more cost than small
deviations in most production systems. The MSD problem is classified into
unconstrained and constrained problem in terms of the common due date.

For the unconstrained MSD problem, an enumeration algorithm with branch and
bound technique which provides an optimal solution is developed by Bagchi et al
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[1]. In order to reduce the computational burden, they presented several properties
which fathom branches. De et al. [3] presented a dynamic programming algorithm
whose complexity is pseudo-polynomial. They reported that it takes about 75
seconds in VAX 8600 machine when the number of jobs are 100. Even though the
algorithm obtains an optimal solution relatively quickly, it is still meaningful to
develop a heuristic algorithm when there are large number of jobs because Kubiak [9]
showed the mean squared deviation problem is NP-complete. For the NP-complete
problems, most researchers tend to develop heuristic procedures in nature.

There are several heuristics for MSD problem in the literature (Eilon and Chowdhury [4],
Kanet [7], and Vani and Raghavachari [15], Gupta et al. [5], Kim and Foote [8]). The
following notation and symbols will be used throughout this paper.

n=Number of jobs to be scheduled

Di= j"'smallest processing time (p1<p:;<:--<p,)
Ji=The job with j smallest processing time
ci= Completion time of job j in a given sequence
¢ =Mean completion time in a given sequence
d=Common due date

II= All possible sequences

Z(S)= Objective function value of sequence S

The MSD problem is formulated mathematically as follows by using above notation:
Minimize Z(S)=-1 3(c;-a)?, vsen )

After differentiating equation (1) with respect to d and equating to zero, solve for d. Then,
the objective function becomes

Minimize Z(S)= .};1( ci— o vsen )

s

where d=d'=¢

Note that this is only true when the common due date d is greater than or equal to
d’, the minimum due date for optimal solution. If above condition is not satisfied, ¢ is not
the optimal due date that minimizes the variance of completion times. Therefore, The MSD
problem can be divided into two problems: Unconstrained MSD problem and constrained
MSD problem. The following assumptions will be used to solve the MSD problem.

(1) All processing times are deterministic and known.

(2) The set up time of each job is not affected by the sequence and included in the
processing time.

(3) All jobs are available at the same time (at time zero).

(4) Preemption is not permitted.

2. LITERATURE REVIEW
Bagchi et al. [1] showed that the unconstrained MSD problem, equation (2), is equivalent
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to the completion time variance (CTV) problem. Therefore, we can use the results of the
papers (Schrage [12], Eilon and Chowdhury [4], Raghavachari [11], Hall and Kubiak [6],
and Kim and Foote [8]) in order to attack the unconstrained MSD problem.

Merten and Muller [10] introduced the CTV problem more than two decades ago for the
file organization. They showed that the CTV problem is equivalent to the waiting time
variance problem. Schrage {12} obtained the optimal sequences for n<5.

Theorem 1 (Schrage 1975)
The schedule such that the job with the longest processing time is processed first
minimizes completion time variance.

Eilon and Chowdhury [4] considered int erchanging two jobs in a given sequence and
obtained the difference of objective function values incurred from interchanging two jobs.
They presented five heuristics for the problem with relatively large number of jobs and
computational experience was shown.

Theorem 2 (Eilon and Chowdhury 1977)
The schedule such that the job with the second longest processing time
is processed last minimizes completion time variance.

Theorem 3 (Eilon and Chowdhury 1977)
The schedule that minimizes the completion time variance is V-shaped.

A schedule is V-shaped if jobs for which ¢=d are sequenced in nonincreasing order of
processing time and jobs for which ¢>d are sequenced in nondecreasing order of
processing time. Kanet [7] studied the problem of minimizing the flow time variation on
single machine with n jobs. He showed that the CTV problem is equivalent to minimizing
the sum of squared deviations of job completion times. He presented a heuristic algorithm
and compared it to the heuristic of Eilon and Chowdhury [4].

Vani and Raghavachari [15] generalized an interchanging property and obtained optimal
sequences for n = 6, 7. They presented a heuristic using the interchanging property and
compared their results with the results of Eilon and Chowdhury [4] and Kanet [7].

Theorem 4 (Vani and Raghavachari 1987)

The schedule such that the job with the second longest processing time is processed last
and the job with third longest processing time is processed second minimizes completion
time variance when n < 18.

Theorem 5 (Hall and Kubiak 1991)

The schedule such that the job with the second longest processing time is processed last
and the job with third longest processing time is processed second minimizes completion
time variance.

For the large and difficult combinatorial optimization problems, the meta heuristic method
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is used to obtain good solution. Simulated annealing, one of the mera heuristics, comes
from the analogy between combinatorial optimization and thermal equilibrium of the solid.
It goes through a number of iterations when to be applied to the combinatorial optimization
problem. Recently, simulated annealing method received a great attention in scheduling area
(see Van Laarhoven et al. [14]).

The success of simulated annealing method are dependent on how to find an effective
procedure moving from one solution to better solution. Generally, the simulated annealing
method consists of initial configuration, initial temperature, neighborhood structure for
pairwise interchanging, cooling temperature scheme, and the computation of objective
function.

With a number of iterations, simulated annealing process looks for a solution like local
search technique. However, it improves the weak point of local search by the possibility
of accepting a change for a worse solution with probability. Many researchers proposed
heuristics using simulated annealing for various scheduling problems (see Van Laarhoven
et al. [14]). Most of them can be coded very easily and provide fairly good solution. But,
the amount of computation time needed to obtain such a solution tends to be relatively
long.

In this paper, heuristic based on the simulated annealing process is presented. It is
applicable to both unconstrained and constrained MSD problem. The proposed heuristic
recorded short computational time when to solve the large job set problem because of the
special property (V-shape property). Since the V-shape property confines the set of
neighborhoods, the simulated annealing process works very fast. Consider two jobs which
may be exchanged for better solution. To pick such two jobs, for example, job k is
selected first. Then, the jobs which can be exchanged with job k are only job k+1 or job
k—1. Any other jobs will violate the V-shape property. That is the reason why the
simulated annealing process is adopted for minimizing MSD problem in this paper.

3. SOLUTION APPROACH

3.1. Simulated annealing process for MSD problem

Generally, a number of iterations are needed to apply simulated annealing process to
scheduling problem. At each iteration k, there are both a current schedule and a best
schedule obtained so far. Then, a decision making is needed to select a new schedule
from the neighborhoods of current schedule. After then, the objective function value of
new schedule is compared with the best solution so far. If the new solution is better, it
will be the current solution of next iteration and the best schedule is updated. Otherwise,
the newly generated schedule is accepted with probability. This possibility of accepting the
worse solution is different from any other local search techniques. The more the number of
iterations in simulated annealing process are, the lower the probability of accepting worse
solution. It is called cooling scheme or temperature control.

In order to apply the simulated annealing method to the MSD problem, the definition of
initial schedule, neighborhood structure, temperature control and cooling scheme of
temperature are required. Especially, the structure of neighborhood is a very important
aspect of the simulated annealing process because it greatly affects the computational time.
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The selection of initial solution is also an important factor like the most iterative search
methods because it affects the quality of final solution.

3.2. Unconstrained MSD problem

When d=d’, the MSD problem is called as unconstrained MSD problem and ¢ is the
common due date which provides the optimal solution. Then, Theorem 1 to Theorem 5 can
be used. There are 2"* sequences which satisfy Theorem 1 through 5 if all processing
times are distinct.

Since the procedure (De et al. [3]) for the optimal solution in MSD problem requires
much computational time when n is a large number, a heuristic approach is desirable when
n is large. Ventura and Weng [16] used a Lagrangian relaxation of a quadratic integer
programming formulation which sets an upper bound on deviation from the optimal
solution. The algorithm consists of the modified method of De et al. and the pairwise
interchanges. But, the CPU times are still much. There are several heuristic algorithms by
Eilon and Chowdhury [4], Kanet [7], Vani and Raghavachari [15], and Kim and Foote [8].

In order to apply the simulated annealing process to the MSD problem, consider the
initial solution since the simulated annealing process performs better with a good initial
solution. We adopt the initial sequence of Vani and Ragavachari’s algorithm as an initial
configuration because it is simple to generate and it has a V-shaped property. It is
determined as follows.

S=Un o2 Ju-tw Tu=5.Tu-3Tu-1)

The neighborhood structure is consisted of those sequences that result from the current
sequence of each iteration by the interchange of the position of two jobs. For the
interchange operation, any two consecutive jobs (not the position in a given sequence but
the order of processing times of two jobs) are selected because of the V-shaped property.
This special neighborhood structure makes the effect of reducing computational time of
proposed heuristic. Of course, the positions of three jobs with the first, the second and the
third largest processing time are fixed in unconstrained case. That means the jobs on the
first , last and second positions are not affected by the position interchanging operation.
Then, evaluate the objective function value. If the interchange of two jobs improves the
objective function value (total sum of mean squared deviations), the interchange is accepted
and the solution is recorded. Otherwise, compute the difference of objective function values
and set it to &. Draw the random number X from the uniform distribution with the range
of [0, 1]. If X < %, the solution is accepted and try another interchanging operation. If
not, try another interchanging of two jobs in the best sequence recorded.

In order to obtain the temperature value of each iteration, we generate 100 sequences
with V-shape property and pick the best and worst objective function values. Set them &
mn and & max, respectively. Then, an initial temperature and final temperature are
determined as

1 —
T0=a min+ 10(6max 6min) (3)
T/= J min (4)

That means only the tenth from the bottom of the range of temperatures are used in the
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annealing scheme. When the user does not specify a temperature range, this temperature
control approach is generally employed. The cooling scheme of temperature in each
iteration is determined by the recurrence relationship such that

T;
1787, )

where B=A3=I2 and M denotes the number of interchanging, 50K. The size of

Tis=

neighborhoods, K, is set to 4a»-1n. Note that there are at most (n-1) neighborhoods
because of the V-shape property even though we have +a.»-» number of pairwise

interchange.

3.3. Constrained MSD problem

If d < d in the objective function (1), then the MSD problem is called as a constrained
MSD problem and ¢ is not an optimal common due date which minimizes the objective
function any more. Then, only Theorem 3 is effective in this case.

Unlike unconstrained MSD problem, there are not many algorithms in the literature.
Bagchi et al. [1] discussed the procedure to find the optimal solution with branch and
bound (enumeration) technique. Since the quality of solution by the simulated annealing
algorithm is affected by the initial solution, we adopt a SPT (shortest processing time)
sequence, S = (Ji, J2, J3,..., Ja-1, Ju), as an initial solution because of following Theorem.
Other aspects of the algorithm except for the method of obtaining initial schedule are all
the same as unconstrained case.

Theorem 6. (Bagchi, Sullivan and Chang 1987)
The SPT sequence is optimal if d< 232

3.4. Computational results

We programmed proposed heuristic by using simulated annealing technique in FORTRAN
77 and ran on an IBM 6000 RISC system. Seven test problems taken from Eilon and
Chowdhury [4] are run and Table 1, Table 2 and Table 3 show the input data and results.
Comparing with other heuristic algorithms, it found better solutions. Heuristic algorithm
based on simulated annealing presents 6 optimal solutions and 1 near-optimal solution.
Even though the heuristic by Vani and Raghavachari [15] also presents 6 optimal solutions
and 1 near~optimal solution, it requires more computational time as Baker and Scudder [2]
and Ventura and Weng [16] depicted. In this case, the heuristic by Kim and Foote [8]
also obtains 6 optimal solution and 1 near-optimal solution. In order to see the
computational times of proposed method, 16 test problems are generated. Table 4 shows
the computational time for large number of jobs. For each job size, random sampling with
the uniform distribution to create processing times is used. According to the Table 4, as
the number of jobs becomes large, the computational time of Kim and Foote heuristic
increases much comparing with proposed heurictic. The computational time of proposed
heuristic takes less than 1 second when n=200
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Table 1. Input data and
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optimal sequences

problem processing time optimal sequence | ¢ (d”)
1 2,6.9,12,19,21 6.4.3.1.25 43.17
2 2.3.6,9.21,65,82 7543216 121.00
3 2.4.6,78910,16 86.5.2.1.34.7 38.63
4 1,2.89,10,12,13,16 86,431,257 43.63
5 1,2589,10,13,16,1819 | 10875213469 | 60.00
6 2.36.9,21,23,34,658292 | 10874321569 |[209.00
7 5.789.10,13,21,2541,100{ 10,8,75.2,1.34,6,9 |165.60

Table 2. Sequences obtained by proposed heuristics

problem

simulated annealing

643125

7543126

86521347

86431257

10875213469

108,74.3.21569

Q[ B [LIIDD [

108.75,2,1,34.6.9

Table 3. Comparison of objective function values

problem | optimal S.A. K&F V&R Kanet E&C
1 21847 21847 21847 21847 21847 218.47
2 918.29 918.41 918.29 918.29 918.29 923.35
3 187.23 187.23 187.23 187.23 187.23 187.42
4 254.23 254.23 254.23 254.48 254.58 254.72
5 486.40 486.40 486.40 486.40 186.44 187.08
6 3584.00 | 3584.00 | 3584.00 | 3584.00 | 3584.00 | 3593.00
7 1336.24 | 1336.24 | 1336.24 | 1336.24 | 1336.24 | 1336.24

Simulated annealing heuristic

Kim and Foote (1996) heuristic

Vani and Raghavachari (1987) heuristic
Kanet (1981) heuristic
Eilon and Chowdhury (1977) heuristic

Table 4. Computational

times for unconstrained MSD problem

n P, CPU(seconds) P, CPU(seconds)
K&F | S.A. ! K&F | SA.

“UL50) | 027 | 019 | U500 | 026 | 018
Ua,50) 031 { 020 | U150 | 029 | 019
U150 | 058 | 026 | U150 | 053 | 025
U(1,50) 061 | 030 | U150 | 054 | 025

100 U(1,50) | 274 | 047 | UQ50) | 276 | 046
U(1.50) 2.76 | 041 U1,50) 273 | 044

200 U(1,50) | 758 | 083 { U(L,50) | 7.84 | 0.80
U.50) 7.83 | 082 | U(1,50) 768 | 077

93
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seven test problems (same as unconstrained MSD

problems except a common due date) are run on IBM 6000 RISC system and common due
dates are set to d = 0.2d", d = 054" or d = 0.8d", respectively. The optimal sequences and
computational results are shown in Table 5 through Tabhle 9.

Table 5. Optimal sequences of the problems

optimal sequences of the problems

problem d=o02d d = 05d d - 08d
1 3.1,2456 431,256 6.3.2,1.45
2 5.2.1.3.4.6,7 6,1.2,3.45.7 7431256
3 3.12456,78 64213578 76421358
4 3.1.2456.7.8 6.3.2,.1.45.7.8 76321458
5 52134678910 | 763214589.10 | 976.3,2.1,45.8.10
6 6.4,3.2,1578910 | 86431257910 | 10764,3,2,1589
7 65312478910 | 97531246810 | 10643125789

Table 6. Sequences obtained by proposed heuristic

optimal sequences of the problems

problem d=02d d - 05d d=08d
1 31,2456 431256 6.3.2,14.5
2 5.1.2,3.46.7 6,123457 7431256
3 3.1.24,56,7.8 6,4.2,1,35.78 76,421,358
4 3.1.2456.7.8 6,3.2,1,45.7.8 76,312,458
5 51234678910 | 952,1,.34,6,7810 | 9,76,1,2.3.458.10
6 71234578910 | 951,23.46,7810 | 985.1,23.46.7,10
7 6.1,23.45,789,10 | 97213456810 | 10643,125,7.89

Table 7. Optimal objective function values

bl optimal objective function values
problem " i-"0.2d" | d= 05d. | d- 0.8d"
1 947.37 515.86 274.14
2 4839.75 2759.96 1326.93
3 716.24 376.62 231.24
4 963.99 516.58 298.93
5 1755.40 964.90 561.30
6 1472400 | 7972.25 4484.26
7 6037.11 3125.54 1930.97

Table 8. Objective function values by proposed heuristic

—

problem objetive function values by K&F objetive function values by S.A.
d=02d d=05d" d=08d" d=02d d=05d" d=0.8d"

1 947.37 515.86 274.20 947.37 515.86 274.14

2 4839.75 2759.96 1326.93 4839.95 2759.96 1326.93

3 716.24 376.62 232.01 716.24 376.62 231.24
4 963.99 516.58 300.17 963.99 516.58 299.03
5 1755.60 969.90 562.70 1755.70 991.80 - 566.10

6 14724.00 7972.25 4484.26 14764.48 8217.15 4508.44

7 6037.11 312554 1930.97 6053.17 1337.72 1930.97
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Table 9. Computational time for. constrained MSD problem

" » due CPU(seconds) 5, due |CPU(seconds)

' date | KgF | s.A " | date [kgF] SA

o5 U(1,50) 25 027 | 018 | U(1,100) | 50 (026 | 0.22
U(1,150) 75 0,20 | 022 | U(1,200) | 100 |023| 0.20

50 U(1,100) 50 174 | 038 | U(1,200) | 100 {168 | 041
U(1,300) 150 170 | 038 | U(1,400) | 200 | 164 035

100 U(1,200) ' 100 6.26 | 057 | U(1,400) | 200 | 6.06 | 0.56
U(1,600) 300 6.28 | 055 | U(1,800) | 400 {6.16 | 0.55

According to the computational results the proposed heuristic provides 11 optimal
solutions and 10 near-optimal solutions. But, when the number of jobs are less than or
equal to 8, the proposed heuristic presents 10 optimal solutions and 2 near-optimal
solutions. Table 9 shows computational times with large problem on IBM 6000 RISC
system. For each job size, the processing times are generated by random sampling with
the uniform distribution like unconstrained case. Note that proposed heuristic takes less
than 1 second in constrained MSD problem when there are 100 jobs (dynamic programing
algorithm needs about 75 seconds even in VAX 8600 system).

3. CONCLUSION

In this paper, we reviewed the literature concerning the function of earliness and
tardiness. Emphasis is on unconstrained/constrained MSD problem. To solve the MSD
problem, we presented a heuristic algorithm based on the simulated annealing technique.
We compared the results obtained by proposed heuristic with - other heuristics in the
literature (Eilon and Chowdhury [4], Kanet [7], Vani and Raghavachari [15], and Kim and
Foote [8]) about unconstrained MSD problem. Proposed heuristic provided better solutions
than any other heuristics.

For the constrained MSD problem, the proposed heuristic also performs well We
obtained 11 optimal solutions and 10 near-optimal solutions in 21 problems. When the
number of jobs are less than or equal to 8, 10 optimal solutions and two near-optimal
solutions are obtained.

Proposed heuristic also require fairly small computational time. It takes less than 1
second when n = 100. Future study will be to consider the earliness and tardiness penalty
problem when jobs are dependent on their sequence. In this case, Theorem 1 through
Theorem 5 do not hold. Another problem to address is on MSD with different weights on
earliness and tardiness.
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