THEEBBEEE 8 22% & 528 1999 117 81

B o=
A Heuristic for Part Sequencing on a Flexible Machine
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1. Introduction

This article deals with a Tool Loading Problem (TLP) on a single flexible machine. A
series of n parts of different types have to be successively processed on the machine. Each
part requires a subset of tools of m different types, which have to be placed in the tool
magazine of the machine before the part can be processed. The tool magazine can
accomodate at most ¢ tools, and, in general, the total number of tools required for all part
types exceeds the capacity of the magazine. As a result, it is sometimes necessary to
change tools between two part types in a sequence. The TLP consists of finding the
sequence in which to process the parts and the tools to place on the machine before each
part is processed in order to minimize the total number of tool switches.

The problem is prominent when the time needed to change a tool is significant relative
to processing time. All tools are kept in a tool crib located close to the machine. Before
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each part is processed, the corresponding tools have to be placed in the tool magazine. If
no tools are available in the tool magazine, they must be transferred from the tool crib to
the tool magazine. A lot of machine processing time can be wasted on the loading and
unloading operations of tools. Since the processing time of each part is sequence
independent, we are only concerned with the time associated with tool switches in order to
minimize the completion time of all parts [2].

This problem has been previously considered by some authors. Crama et al. [1] proved
that the TLP is NP-hard, and so suboptimal solution methods are possible. However, once
the part sequence is known, optimally loading the tools in the magazine is accomplished by
a Keep Tool Needed Soonest (KTNS) policy as discussed by Tang and Denardo [4]. This
policy prescribes that when some tools should be removed for tools required by the next
part, those tools that are needed the soonest for remaining parts should be kept first in the
magazine. In a recent article of Hertz et al. [3], they pointed out that though the heuristics
for the TLP was studied extensively, all known algorithms based on Traveling Salesman
Problem (TSP) were myopic in the sense that they account for interactions of two parts at
a time without a global view of the entire part sequence. So they suggest two more
adequate ‘tooling’ distances between two parts. Here we present a new distance on a
global view of the entire part sequence in section 2. In section 3, we present computational
results showing the relative efficiency of a proposed distance over the distances suggested
by Hertz et al. [3]. The conclusions follow in section 4.

2. New definition for tooling distance between two parts

The TLP reduces to a TSP with distances d(i, 7) between two parts i and j. If all
parts use full capacity, the distances can be correctly estimated. However, in general, as
not all parts require full capacity, the distances can be not correctly defined [1]. So, Hertz

et al. [3] considered the five definitions for d(z, ;) The first two distances are:
aG, ) = ¢ — ITNTY

and
d(i, /) = ITJT| - ITNT)

where T;is the set of tools required by part i.

The first is an upper bound on the number of tool switches between i and j. The next
distance: .

ds(i, /) = max{0, |T\UT} — ¢}
used by Crama et al. [1] represents a lower bound the number of tool switches between i
and j. The next two distances are:

dgi, ) = max(o, ITUTI - [6 (n—/zl)(il'Tf)UTA’ j

and

ati, 9 = ([<EL]1mUn - 110 (FE2ITUTL )

where A,(7, j) is the number of parts, apart from i and j, requiring tool ke T;\UJ T;
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Al = kE%T-Ak(i’ and @ is parameter in [0, 1]. The above two distances take into

account the ¢ — |T)tools present in the magazine when going from i to j nor those
required by parts following j.

We will present a new distance that improves upon |T;\ TJ, which is a valid upper
bound on the number of switches from i to j as suggested by Hertz et al [3]. This
improves on |T;\ T{ by subtracting a quantity, that is, the number of tools required by

only j and not { are likely to be required just before i and then kept in the magazine
during processing the part i. Hence we define:

dueli, ) = |T\TJ — (C — |7} )( 4G, J))

c n—1

where &8,(i, j) as the number of parts, apart from { and j, requiring tool k=(T;\ T)), and
Ai, = ke(;”&e(i, .JThe factor (¢ ~ |T) /| cgives a larger value if the size of the

magazine is small, i. e., if more tool changes are probable.
3. Computational experiments

In order to investigate the effectiveness of the new distance for the TLP. we generate
sixteen types of problem instances as in Crama et al. [1] and Hertz et al. [3]. Each
instance type is characterized by the following parameters, where

n = number of parts
m = number of tools
min = lower bound on the number of tools per part
~max = upper bound on the number of tools per part
¢ = tool magazine capacity.
The various instances types generated are described in Table 1. For each type, 10
instances were randomly generated resulting in a total of 160 instances.

Table 1. Instance types

n m min max C

10 10 2 4 4,5, 6, 7
15 20 2 6 6, 8, 10, 12
30 40 5 15 15, 17, 20, 25
40 60 7 20 20, 22, 25, 30

Hertz et al. [3] gave several interesting heuristics, but they suggested the use of FI2
when good solutions have to be computed quickly. So we applied FI2 heuristic to compare
with six distances defined in Section 2. FI2 successively applies Farthest Insertion
Heuristic [5] using each part as a starting point, applies KTNS to each of the n solutions,
and selects one with the least number of tool switches among n solutions. Farthest
Insertion Heuristic is performed as follows:

Step 1. Start with part i only.
Step 2. Find part p such that d(i, j) is maximal and form the subtour (i, p, i).
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Step 3. (Selection) Given a subtour, find part k not in the subtour and part / in the current

subtour such that d(/, k)= mj'x { mir; d(i, j)? where j denotes a part not in the

current subtour and i denotes a node in the current subtour.

Step 4. (Insertion) Find the edge (i, j) in the subtour which minimizes d(i, &) +d(k, j)
—d(i, j)Insert k between i and j.

Step 5. Go to Step 3 unless all parts are on the tour.

The computational results are summarized in Table 2. The value 8=0.25to be best
was used in d;. For each distance type, we report averages and (in parentheses) standard

deviations over 10 instances in terms of deviation, in percent, of the value of the TLP
objective function (number of tool setups, equal to ¢ plus the number of tool changes) over
the best value.

Table 2. Comparison of six heuristics

(n, m, rnin, max, c) di dz ds dy ds Anew

(10, 10, 2, 4, 4 | 4.18(4.18) | 1.67(2.67) | 4.27(4.27) | 1.67(2.67) | 0.83(1.50) | 1.00(1.80)
(10, 10, 2, 4, 5) | 2.82(3.95) | 2.91(4.07) | 8.78(3.60) | 1.91(3.05) | 1.00(1.80) | 2.74(3.84)
(10, 10, 2, 4, 6) {2.11(3.38) | 1.11(2.00) { 5.00(6.00) | 1.11(2.00) | 1.11(2.00) | 1.11(2.00)
(10, 10, 2, 4, 7 ] 0.00(0.00) | 0.00(0.00) | 2.11(3.38) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00)
(15, 20, 2, 6, 6) | 7.75(3.39) | 5.16(3.65) | 7.14(3.66) | 3.32(2.66) | 3.10(2.48) | 2.45(2.45)
(15, 20, 2, 6, 8) | 5.00(1.77) | 3.60(2.16) [15.73(5.80)| 2.54(3.05) | 0.00(0.00) | 1.84(2.20)
(15, 20, 2, 6, 10) |3.54(2.13) | 4.00(1.60) |17.67(6.47)| 2.03(2.44) | 1.01(1.62) | 0.95(1.52)
(15, 20, 2, 6, 12) | 1.00(1.60) | 1.00(1.60) | 9.05(5.95) | 0.00(0.00) | 0.50(0.90) | 0.50(0.90)
(35, 40, 5, 15, 15) |6.21(1.71) | 2.32(1.27) | 3.74(1.90) | 0.75(0.75) | 1.93(1.03) | 0.68(0.82)
(35, 40, 5, 15, 17) | 5.65(1.30) | 3.11(0.96) | 8.21(3.13) | 0.85(1.02) | 2.72(1.42) | 1.66(1.33)
(35, 40, 5, 15, 20) |5.86(2.22) | 4.64(2.33) |22.51(3.93)| 1.16(0.93) | 2.21(1.72) { 1.85(1.59)
(35, 40, 5, 15, 25) | 5.98(1.39) | 3.71(1.59) |26.82(4.34)| 1.89(1.56) | 1.87(0.98) | 1.22(1.22)
(40, 60, 7, 20, 20) |4.92(1.34) | 1.81(0.60) | 3.28(0.88) | 0.47(0.57) | 1.21(0.58) | 0.23(0.32)
(40, 60, 7, 20, 22) |5.73(1.26) | 2.02(1.38) | 6.05(2.35) | 0.87(0.82) | 1.87(1.02) | 1.07(0.86)
(40, 60, 7, 20, 25) |5.40(2.27) | 3.33(1.38) [15.20(6.16)| 1.43(1.39) | 1.81(0.99) | 0.26(0.52)
(40, 60, 7, 20, 30) |4.36(2.11) | 2.85(1.20) |25.05(3.22)| 1.52(1.16) | 1.33(1.20) | 1.23(1.09)

average 4.41(1.60) | 2.70(1.12) (11.29(3.22)| 1.35(0.69) | 1.41(0.71) | 1.17(0.60)

It can be seen from this table that of all distance functions, dj is clearly the least
interesting and on average and standard deviation, d,., is better than d,, dy, d,, and
ds. As the size of (n, m, min, max, c) increases, the ranking of solutions delivered by the
heuristics seems to become more stable. Namely, d,., vields the best results. Next comes
dy and ds and the worst solution is produced by dj. Also, the size of ¢ is small, i e,
more tool changes are probable, d,., performs well in comparison with the other distance

functions. It can be explained that d,., tends to be good estimate of the number of tool
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switches. In case of large values for c, every solutions contain fewer tool switches. And so
it is difficult to compare with each other.

4. Conclusions

We have suggested a new distance function to guide the search in TSP-based
heuristics for a tool loading problem. The distance is based on a global view of the entire
part sequence. The performance of this distance is tested with the other distances proposed
by Hertz et al. [3] on several sets of randomly generated instances. It turns out that the
new distance yields solution values that rank among the best available. The further
research 1s to explore the new distance on other TSP-based heuristics.
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