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1. Introduction

Group Technology (GT) has been well recognized as one of the most important factors in
improving the productivity of manufacturing systems. Although numerous publications have appeared
on the subject of GT, room for improvement in cell formation methods still exists. A number of
factors including machine failure rates, resource utilization, workload balance in a cellular
manufacturing system should be thoroughly investigated to take full advantage of GT. However,
conventional GT tries to avoid the interactions between the cells and tends to set up permanent
idealistic machine cells. Hence, the conventional GT does not consider any Exceptional Element (EE)
which was first introduced by King (1980). The basic idea of GT is the decomposition of the
manufacturing system into subsystems by classifying the parts into families and machines into
machining cells based on the similarity of the part manufacturing characteristics.

The success or failure of cell formation to any problem depends mainly on the
identification of similarity measures. The similarity measures published in the literature
have a limitation in solving the E.E related problem (Kusiak and Cho, 1992). The similarity
coefficients presented in Table 1 consider neither minimizing the E.E nor machining
operations in the part-machine incidence matrix.

This paper presents a cell formation model to minimize the EEs based on the similarity
of individual machines. A theorem on determining the maximum number of cells, not
including any E.E, is studied. The solution procedure of cell formation using the Hungarian
method is presented with illustrative examples,
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Table 1. Similarity measures

Coefficient Reference Formula Form
Arthanari s
Mincowski . —
and dodge (g laa—a;l p) Integer
Coefficient 2 8'( )
: ‘. Qips Djp
wnF;lou.t McAuley McAuley R A — O<s=1
considering g 8 (aw, aw
flow -
Kusiak 1, if awxzai or
and Kusiak axsay, for all i | Integer
Cha 0, otherwise
Leskowsky n;
accard <S<
] et, al. (ni+n;—n; Ossst
Dutta et,
Coefficient | Dutta et al al ni+n;—2n; Integer
with ;
Chu and 2n;
.+ .| Dice-Sorensen —_— <S<
considering Pan (ni+n) Osss1
flow
Chu and n;
Dot-product —_ <g<
P Tsai (n;+n)) Oss<
2
Chu and Lee Chu and S i — Integer
Lee (n,~+ n;— n,',')

8 (ax, aw=1, if ax=ap=1; 0, otherwise
8 (aa, aw =0, if ax=ax=0; 1, otherwise

n; : the number of machines visited by part i.
nj the number of machines visited by parts i and j

2. Methodology

The following assumptions are made in this paper.

(1) The operations are assigned to the machines based on part manufacturing
characteristics.

(2) Alternative machining routes of a part are available.

(3) Each machine has muitiple functionalities in machining or assembly.

(4) But, all operations of the part types can not be completed in one machine.

(5) A machine cell includes more than one machine.

In this paper, a preliminary cell is defined as a cell used temporarily in the cell
formation processes. The following notation is used throughout the paper.
M; : The number of machines to perform operation j

DC, : The incapability index of machine cell ¢ in processing part i, which denotes
the number of non-performable operations of part i in machine cell ¢
NMC : [ the numberzof machmes]

ai= { 1, if part i needs operation j
Y70, otherwise

|1, if machine cell ¢ can perform operation j
™ [ 0, otherwise
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_ [ 1, if machine k can perform operation j
%=V0, otherwise

a(ak,',qk-;)={(1)' if ay=1landgy; =1

, Otherwise

1, #f ng<ay

e @)=\ opesnote
{1, if ny=1andgy=1

Kng, ay) = 0, othenﬁvz’se

2.1 Similarity coefficient

We can reduce the intercell movement by improving the capability of a cell to perform
the operations of a part. One way to improve the capability of the cells, without adding
any machine, is to form the cells based on the following similarity coefficients:

- The similarity coefficient of individual machines, which represents the number of
operations available by a pair of machines (k, k'), Sy is formulated next:

Skk’=f§3(qki’4k'}l)i k=1,2,...,l, k'=1!2""'1
- The similarity coefficient between machine k and preliminary cell ¢, which represents
the number of operations available by the machine k and the cell ¢, CS, is formulated

next:

CSCk:]ZB(”cj.ij) , c=1,2,....C, k=1,2,...,1

2.2 Basic Theory

To date, a study on the determination of the maximum number of cell without an EE
has not been performed yet. We use the following lemma and theorem to determine the
range of the maximum number of cells.
[Lemma]

NPC < l;n]lgn M;. where NPC is the number of cells required to perform the

operations of all part types.

Proof: Let the number of cells, NC be 121]1211 M,- + 1. If every machine according
to 12;12" M; can perform operation k, the number of machines to process the operation k

is NC-1. At least, one of NC-machine cells does not perform the operation k since the
operation k can not be assigned to one of the NC-machine cells. If the NC-cells are

formed, the number of the formed cells exceeds NPC. Therefore, NPC < 121]12” M,

The theorem, which determines the maximum number of cells not including any E.E, is
derived from the above lemma.

[Thecrem)
Suppose that MAXC is the maximum number of cells not including any E.E.

Case L If NMC = NPC, then MAXC = NPC.
Case I, If NMC > NPC, then NPC < MAXC <NMC.

Case III; The case of NMC < NPC does not exist.
Proof:
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1. Casel; NMC = NPC:
One can see that NPC is the number of cells not including any EE in any case from
the above lemma. NMC is the maximum number of cells which may not have any

EE. Therefore, MAXC = NPC.

2. Case II ; For NMC > NPC:
NPC denotes the number of cells not including any E.E. NMC represents the maximum

number of cells which may not include any EE. Hence, NPC < MAXC <NMC.

3. Case III; The case of NMC <{ NPC does not exist.

Since NMC = [the number of machines / 2], and a machine cell includes at least two

machines from the assumptions, the case of NMC < NPC will not occur

3. The solution procedure
In this paper, the solution procedure for the cell formation has two algorithms.
Algorithms I determines the maximum number of cells, and algorithm II clusters the part
families and the cells by using Hungarian method, respectively.
Algorithm 1
Step 1. Calculate the inter-machine similarity coefficients from the machine-operation
incidence matrix. Set the number of preliminary cells,

PC = I;n;zn M;

Step 2. Find the pairs of machines from the inter-machine similarity matrix by using the
Hungarian method. Determine the pairs of machines as many as PC, to minimize
inter-machine similarity. If there are pairs of machines with the same similarity
coefficient, choose a pair with the largest number of operations performable in the
pair.

Step 3. Calculate the similarity coefficients between the unassigned machine and the

preliminary cells and fill in the preliminary cell - machine similarity matrix.

Step 4. Apply the Hungarian method to the matrix of the preliminary cell - machine

similarity, and assign machines to the preliminary cells.

If there is an unassigned machine, go to step 3.

Otherwise, if the cells formed could perform all operations to be completed, set the
number of cells, NC = NPC and go to step 5. Otherwise, go to step 2.

Step 5. Based on the theorem in section 2, determine the range of the possible number of
cells or the maximum number of cells which does not include any EE If the
maximum number of cells is, in Case II, set MAXC = the MAXC - 1 and NC =
MAXC. If an EE exists, go to step 1. Otherwise, stop.

Algorithm IT

Step 1. Find the pairs of machines from the inter-machine similarity matrix by using the
Hungarian method. Determine the pairs of machines, which minimizes the
inter-machine similarity, by as many as the number of preliminary cells.

If there are pairs of machines with an identical similarity coefficient, choose a pair
with the largest number of operations performable in the pair.

Step 2. Calculate the similarity coefficients between the unassigned machine and the

preliminary cells and fill in the preliminary cell - machine similarity matrix.
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Step 3. Apply the Hungarian method to the preliminary cell - machine similarity matrix,
and assign a machine to the preliminary cells.
If all machines are included in the cells, go to step 4. Otherwise, go to step 2.
Step 4. Find the incapability indices of the machine cells for the parts, and write the matrix
of part-machine cell incapability index.

If DC.> 0 and the EE exists,

set NC = NC - 1, and go to step 1. Otherwise, go to step 5.

Step 5. Apply the Hungarian method to the matrix of the part-machine cell incapability
index, and assign parts to each machine cell and remove the assigned parts
from the matrix.

If there is a part to be assigned, go to step 5, Otherwise, stop.

4. Illustrative examples

To illustrate the solution procedure of the two algorithms, consider the incidence matrix
of 22-parts and 15-operations in Table 2 and the incidence matrix of 13-machines and
15-operations in Table 3, respectively.

Algorithm 1
Step 1. The inter-machine similarity coefficients are calculated in Table 4 from the
machine-operation incidence matrix in Table 3. The number of preliminary cells is set to

. min _
three, since 1<j<n M; = 3.

Step 2. As shown in Table 5, one can obtain the machine pairs by applying the Hungarian
method to the machine similarity matrix in Table 4. Table 6 represents the lists of
performable operations the preliminary cell which is determined to maximum number of
operations in the cells.

Table 2. Part-operation incidence matrix

O1 |02 | O3 104 05,06 07|08 1|03 |010]011]012|013|014| 015
P1 1 1 1 1 1 1

P2 1 1 1 1
P3 1 1 1 1
P4 1 1 1 1
P5 1 1 1 1 1 1
P8 1 i 1 1 1 1
P7 1 1 1 1

P9 1 1 1 1
P10 1 1 1 1 1
Pi1| 1 1 1
P12 1 1 1 1 1
P13 1 1 1
P14] 1 1 1 1 1
P15 1 1 1 1
P16 1 1 1 1 1 1 1 1
P17 1
P18 1 1 1
P19l 1 1 1 1
P20 1 1 1
P21 1 1 1
P22 1 1 1 1 1 1

I P ) Y
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Table 3. Machine-operation incidence matrix.

O1 | 02 | O3 | 04 [ O5 | O6 | O7 | O8 | O9 | 010 | Ot1 { 012 ] O13 | O14 | O15
M1 1 1 1 1 1 1 1 1
M2 1 1 1 1
M3 1 1 1 1
M4 1 1 i 1 1 1
M5 ! 1 1 1 1 1
M6 1 1 1 1 1
M7 1 1 1 1
M8 1 : 1 1 1 1 1 i
M9 1 1 1 1 1
M0 | 1 1 i 1 1 1 1 1
M11 1 1 1 1
Mi12 1 1 1 1
M13 1 1 1 1

Table 4. Machine similarity matrix

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 | M11 M12 | M13
M1 0 0 3 4 2 3 1 4 4 4 3 2 1
M2 0 0 o] 1 3 1 3 1 1 2 1 1 1
M3 3 0 0 0 2 1 0 2 2 2 0 1 1
M4 4 1 0 0 0 2 0 3 2 3 2 2 2
M5 | 2 3 2 0 0 1 4 3 2 2 2 1 1
M6 3 1 ] 2 1 0 1 3 0 5 1 0 2
M7 1 3 0 0 4 1 0 2 1 2 2 1 0
M8 4 1 2 3 3 3 2 0 0 4 2 2 1
M8 4 1 2 2 2 0 1 0 0 1 2 2 1
M10 4 2 2 3 2 5 2 4 1 0 i 2 3
M1 3 i 0 2 2 1 2 2 2 1 0 0 0
M12 2 i 1 2 1 [¢] 1 2 2 2 Q 0 1
M13 1 1 1 2 1 2 0 1 1 3 0 1 0
Table 5. The number of performable operations on each pairs
Machine No. of performable Machine No. of performable
pair operations pair operations
Machine 1,13 11 Machine 89 12
Machine 2,1 12 Machine 9,8 12
Machine 3.2 8 Machine 10,11 11
Machine 4.5 12 Machine 11,10 11
Machine 54 12 Machine 12,6 9
Machine 6,12 9 Machine 13,7 8
Machine 7,3 8
Table 6. Performable operations in preliminary cell
Performable operation Performable operation
in each machine in each machine pair
. Machine 1: 1, 2, 4, 7, 9,
Machine 12, 14, 15 12345789,12,131415
’ Machine 2 : 3, 5, 8, 13
Machine 4 : 1, 2, 6, 9, 13,
Machine 15
45 Machine 5 - 3, 4.5, 8, 11, 1,2,3,4,5,6,89,11,13,14,15
14
) Machine 8 : 1, 6, 7, 8, 11,
M“‘Chg‘e 14,15 12346789,11,12,14,15
8, Machine 9 : 2, 3, 4, 9, 12
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Step 3. The similarity coefficients between the preliminary cell and the unassigned
machines are obtained in Table 7.

Table 7. Similarity coefficients between the preliminary cell and the unassigned machines

M3 | M6 | M7 | M10 [ M11 { M12 | M13

Preliminary cell 1] 3 4 4 6 4 3 2
Preliminary cell 2| 2 3 4 5 4 3 3
Preliminary cell 3] 4 3 3 5 4 4 2

Step 4. The Hungarian method is applied to the preliminary cell-machine similarity matrix
in Table 7. The available operations in each preliminary cell are listed in Table 8.

Table 8. Available operations in a preliminary cell

The assigned machine Performable operation
Preliminary 1 Machine 1,213 1,2,34,5,6,789,10,12,13,14,15
Preliminary 2 Machine 45,3 1,2,34,5,6,789,11,12,13,14,15
Preliminary 3 Machine 896 12346,789,10,11,12,13,14,15

Step 3. The similarity coefficients between the preliminary cell and the unassigned machines
are calculated in Table 9.
Table 9. Similarity between the preliminary cell and the unassigned machines

M7 M10 Mil Mi2
Preliminary cell 1 4 8 - 4 4
Preliminary cell 2 4 7 4 4
Preliminary cell 3 3 7 4 4

Since machine cell 1 can not perform operation 11. We set NPC = 2 and go to step 5.
Table 10. Available operations in final preliminary cell

The assigned machine Available operation
Machine cell 1 Machine 12,1312 1,2,345,6,7.89.10,12,13,14,15
Machine cell 2 Machine 45,3.11,10 1,23456.789.1011,12,13.14.15
Machine cell 3 Machine 8,9.6,7 1,2,3456,789,10,11,12,13,14,15

Step 5. Since NPC = 2 and NMC = [-123—]= 6. The range of the maximum number
of cells is obtained as 2 £ MAXC < 6 from the theorem presented in section 2.

Algorithm II
We formed six cells in table 11 by steps 1, 2, and 3.

Table 11. Available operations in a preliminary cell

Machine cell The assigned machine Available operation
Machine cell 1 Machine 1,2 12.345,789,12,13,14,15
Machine cell 2 Machine 45 1,23456.8911,13,14,15
Machine cell 3 Machine 6,12 1,2,6,7,8,10,12,13 14
Machine cell 4 Machine 89 1,2,34,6,78911,12,14 15
Machine cell 5 Machine 3,7,13 34,56,78,10,11,12,13,14
Machine cell 6 Machine 10,11 1356,79,10,12,13,14,15
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Step 4. The incapability index is calculated in the part-machine cell incidence matrix in
Table 12. It present that if number of cell is 6, EE(Part 1, 6, 14, 16, 22) is included in cell
formation.

Table 12. Part-machine cell incidence matrix of an incapability index

M/C Cell 1{M/C Cell 2|M/C Cell 3|M/C Cell 4{M/C Cell 5|M/C Cell 6
Part 1 L 5? 2 A 1
Part 2 - 0 0 2 2 2 i
Part 3 - 2 2 1 1 0 0
Part 4 0 0 i 1 2 1
Part 5 2 0 4 1 2 2
Part 6 - oo 2 1
Part 7 0 1 1 1 0 1
Part 8 2 1 2 1 2 0
Part 9 0 1 2 1 2 i
Part 10 1 1 2 0 0 2
Part 11 0 0 1 0 2 2
Part 12 i 3 2 1 2 0
Part 13 0 0 2 1 1 i
Pat 14 | . 1. o4 -2 2 2 1
Part 15 2 0 2 0 0 1
Part 16 | 2 2 2 1 2 2
Part 17 0 0 2 0 i 1
Part 18 2 1 2 0 1 1
Part 19 0 0 2 1 4 1
Part 20 0 2 2 0 1 1
Part 21 0 0 1 1 1 1
Part 22 1 2 2 2 e 2
So, we formed five cells in table 13 by steps 1, 2, and 3.
Table 13. Available operations in a preliminary cell
The assigned machine Available operation

Machine cell 1| M/C 12,13 1,2,3,4,5,6,7,89,10,12,13,14,15
Machine cell 2| M/C 453 1,2,3,4,56,789,11,12,13,14,15
Machine cell 3] M/C 6,12,7 1,2,3,5,6,7,8,10,12,13,14
Machine cell 4] M/C 89 12,3,4,6,7,89,11,12,14,15
Machine cell 5| M/C 10,11 1,3,5,6,7,9,10,12,13,14,15

Step 4. The incapability index is calculated in the part-machine cell incidence matrix in
Table 14.
Step 5. The final celi formation is completed in Table 15.

Table 14. Part-machine cell incidence matrix of an incapability index

Part|112)3(4|5|6|7[8|910{11(12{13|14|15|16{17{18]19{20|21{22
Celllj 1{0f{2]|0]2|2[0]2]0]1|0]|1]|O0|1|2|3|0]|2]0]|0f1]1
Cell2{3{0({2[0f0[3|1|1]1}1{0[3[0|1]|0]2]|0|1|0|2]0]2
Cell3j1{1({0j0f2({1|1}j0]J1j1f1fOf1|1]1{2|1|[1|0f1]|0]|1
Cell4/0|0j0{Of0OJ0j0]OJOJOlO|lO]O]|O|O]JO]|O[OJO]|O]j0O]O
Cell5]2|12(0]|2]2]|2]0]2({2]|0]2}2]1|2]0]2{1]|1]|4}1|1]|2
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Table 15. Final machine cell and part family
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5. Computational Analysis

In this section, we compare and analyze the outcomes of the p-median method of
Kusiak (1987), the algorithm of Srinivasan et, al. (1990), and the solution procedure in this
paper. As shown in Table 16, one can see that the machine cells formed by the solution
procedure in this paper produced less E.Es than the p-median method by maximizing the
number of operations available in each cell.

Table 16. Not available operation in each machine cell

Machine cell Not availabl.e operation in
machine cell
machine cell 1 : 1,2 operation 6,10,11
) machine cell 2 : 45 operation 7,10,12
This paper machine cell 3 : 6,11,12 operation 4,5,11
machine cell 4 : 89,10 o
machine cell 5 : 3,7,13 operation 1,2,9,15
machine cell 1 : 1,2,3 operation 6,10
_ machine cell 2 : 457 operation 7,10,12
P;lr:teh(ilgn machine cell 3 : 68,9 operation 5
machine cell 4 : 10 operation 2,3,4,8,9,15
machine cell 5 : 11,12,13 operation 15,7,11

81
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Table 17. The summary of cell formations vobtained by the three approaches

:gﬁs Method Machine cell N%pé}%ﬂ&?le %%g\fg%%%lse
. cell 1:127810,1213 .
This paper |5 34560,11 : 0
p-median |cell 1 : 157891011 . 0
2 method  [cell 2 : 2,346,12 .
Algorithm of
Srinivasan Impossible to form
et. al
cell 1 :1,2 13, 12 Op. 11
This paper [cell 2 : 3, 4, 5, 10 .11 . 1
cell 3:6,7 8,9 .
p-median cell 1:1,2 3 4,12 Op. 10
3 method cell 2:5, 7 11, 13 Op. 1,2,712 5
cell 3:6,8, 9, 10 .
Algorithm of
Srinivasan Impossible to form
et. al
cell 1 :1, 2, 13 Op. 11
. cell 2:3, 4,5 Op. 10
This paper [*1 36,11, 12 Op. 45,11 5
cell 4:7 8, 9, 10 .
cel 1:1,2 Op. 6,10,11
4 p-median |cell 2 : 3, 4,5, 7 Op. 10 8
method |cell 3:6, 8,9, 10 .
cell 4 : 11, 12, 13 Op. 15,711
Algorithm of
Srinivasan Impossible to form
et. al
cell 1:1,2 Op. 6,10,11
cell 2:4, 5 Op. 710,12
This paper [cell 3 : 6, 11, 12 Op. 45,11 13
cell 4: 8, 9, 10 .
cell 5:3, 7. 13 Op. 129,15
cell 1:1,2, 3 Op. 6,10
p-median cell 2: 4,5 7 Op. 7,10,12
5 thod cell 3:6, 8, 9 Opn. 5 16
MEtioc  lcell 4 : 10 Op. 2.34.89.15
cell 5 : 11. 12 13 Op. 15.7.11
cell 1 :1,2 3,7 13 .
Algoritm of |cell 2 : 4, 5 Op. 7,10,12
Srinivasan fcell 3 : 8, 9 Op. 510,13 15
et. al |cell 4 : 10, 11 Op. 24811
cell 5:6 ,12 Op. 34,59,11,15

Tables 17 shows the summary of various cell formations obtained by the solution
procedure in this paper, the p-median method, and the algorithm of Srinivasan et. al. The
proposed approach efficiently minimizes the number of E.Es at the cell formation stages as
presented in Table 17. Table 18 presents part families and machine cells formed by the
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two approaches and the solution procedure in this paper, respectively. The proposed
approach does not contain any E.E through cells 1, 2, 3, 4, and 5.

Table 18. The number of EE

No.
of Method Part family EE No.of EE
cells
This paper | 1.35.7.9,11,13,15,17,19,21 . o
cell 2 : 2,468,10,12,14,16.18,20,22 .
9 p-median  eell 1 : 1,3579,11,13,1517.19.21 . 0
method  [cell 2 : 246810,12.1416,18.20.22 .
alS.nruvasan et. Impossible to form.
cell 1 : 14,7.11,13,16,1922 .
This paper |cell 2 © 2,5810,14,17,20 . 0
cell 3 : 369.12.151821 .
3 ] cell 1 : 2457101920 .
Pr;‘ggf(;g" cell 2 : 813,14,15,17.1821 P8(1).P(1,2),P18(7), P21(1) 5
cell 3 : 1369.11,12.1622 .
J@I_S. rnivasan  et. Impossible to form
cell 1 : 169,13,17.20 .
. cell 2 : 2510,15,18 .
This paper [0 3738.12.19.21 . 0
cell 4 : 47,11,14,16.22 .
4 cell 1:279.11,19.20 .
p-median  |cell 2 : 4510151821 . )
method cell 3: 1681214 .
cell 4 : 3,13.16,17,22 P16(11)
JESnmvasan et. Impossible to form
[ cell 1: 29,11,17.20 .
cell 2 1 45,1319 .
This paper [cell 3 : 38,1221 . 0
cell 41 16,14,16,22 .
cell 5 : 7.10,15,18 .
cell 1: 279.10,14 P14(10)
i cell 2 : 451119 .
5 | Pomedian oon 31681220 . 8
cell 4 : 3,15,18.21 P3(3),P15(13),P18(15),P21(1,8)
cell 5 : 1317.16.22 P16(5.11)
cell 1 : 1491422 .
. cell 2 : 25,13,17 .
Srinivasan  etlcell 37 10,1115.18.16 P16(10) 7
cell 4 : 381219 P19(2)
cell 5 ¢ 217620 P7(5).P6(4,15).P20(4,15)

We further evaluate and compare the three approaches by solving ten problems taken
from Boctor(1991). The proposed approach in this paper considers the operations as the
parts to form the machine cells since the only machine-part matrix was not given in
Boctor’'s problems. The total number of performable operations (TPNO) in the formed cells
is used as an evaluation criteria. The proposed solution approach obtained the largest
TPNO among the three approaches at every cell in each problem in Table 19. The entry
(=) in Table 19 implies that the approach of Srinivasan et. al. (1990) can not solve the
problem when the specific cell number is given. The approach presented in this paper
shows the superiority of itself to the other methods in the each cell in maximizing the
TPNO.
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Table 19. Comparison of three approaches with Bocktor’s problem numbers 1-4 (continued)

Problem No. No. of Cell This paper Snmvzs.an | P-median
7 14 23
3 28 2 1
2% 29 27
TPNO & 65 61
23 - 27
22 - 11
Boctor’s ! 2% - 4
23 — 27
problem 1 TPNO o - 9
2 - 27
2 - 11
5 21 - 4
23 - 27
18 - 4
TPNO 106, - 73
2% 24 29
3 2 9 1
26 28
TPNO 73 61 51
25 - 29
2% - 1
4 2 - 21
Bocltor’s2 20 = 3
problem TPNO TS - 54
23 — 29
20 - 1
5 20 - 21
19 - 3
20 - 3
TPNO 102 - 57
2% 30 3
3 26 9 14
24 12 30
TPNO 76 51 47
2 3
. 22 - 8
, 2 - 30
Boctor s, 18 - 16
problem TPNO & . 57
21 - 3
20 ~ 8
5 22 B 29
14 B 3
14 - 17
TPNO i B - 60
2% - 26
3 25 B 24
2% - 4
TPNO ST - 54
2 14 2
4 2% 28 24
Boctor's 2 12 4
21 15 3
problem 4 TPNO 50 69 57
22 - 26
23 - 24
5 2 - 4
17 3
Z 5
TPNO A - 62
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Table 19. Comparison of three approaches with Bocktor’'s problem numbers 5-10

This  |{Srinivasan Problem| No. of [This paper|Srinivasan [, _ .
No-of | paper | et al |P-median|| "No. | Cell et al |F median

5% - 3 28 - 29

3 28 x 21 3 21 - 2

27 - S

27 x 29 >

TPNO 81 X 53 TPNO| 82 . 58

22 x 3 25 - 29

4 2 X 21 4 26 - 24

, 24 X 29 24 - 4
p’jgg{;;i 21 X 6 22 - 5
TPNO x 59 TPNO| 97 - 62

a 4 2 - 29

5 : 231 Boctor's 22 - 4

>< ) problem 8 5 20 - 24

= 6 22 - 4

TPNO |- X 63 I S 2

30 29 TPNQ| 109 - 66

3 17 23 20 20 28

8 2 22 15 4

TPNO 55 4 6 20 17 5

- 4 20 9 24

4 - 2 18 21 4
Boctor's ~ 2 11 23 5
problem 6 TPNO - 8 TPNO 111 105 7.0
_ 1 27 30 5

- 1 3 29 17 29

5 - % %5 15 24

B 24 TNO 81 62 58

B 2 25 - 5

TPNO 3 - 62 4 24 29

26 - 21 , 23 24

3 28 = % Boctor's 73 7

z - 3 ||™™ ®[terno] % - 65

TPNO | 81 | - 52 2 - 5

22 - 21 22 - 29

A 22 - 28 5 20 - 24

22 - 4 22 - 7

23 - 3 2 - 9

TPNO | 8% - 56 TPNO| - 107 74

20 - 21 25 - 3

19 - 4 3 22 - 26

Boctor's 5 19 - 27 - 28 _ 23
problem 7 19 - 4 TPNO| B 52
22 Z 3 24 - 3

TPNO 9 - 59 4 2 2%

17 17 20 ) 2% %

15 15 5 Dot 19 - 3

15 15 4 jPoUem Plrpnol ® - 56

8 14 14 24 % 27 3

13 13 4 16 16 24

13 13 3 5 18 12 4

13 13 5 19 15 24

12 12 5 0 14 3

TPNO | A2+ 112 71 TPNO| .99 - 84 58
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6. Summary and Conclusion

This paper minimizes the inter-machine similarity to reduce the E.Es at the cell
formation stage, which in turn minimizes the intercell movements of the parts. Algorithms
I and II are consecutively used to form machine cells. The similarity coefficients are
developed and used to minimize the E.Es.

In Algorithm I, the pairs of machines, equal to the maximum number of cells arranged
to a descending order of the inter-machine similarity coefficient values are selected in order
to form the preliminary cells. If there is a tie, i.e., the pairs of machines have an identical
similarity coefficient value, the pair of machines which perform an operation placed first in
the sequence of operations is selected. Algorithm II improves the preliminary cells by
assigning the unassigned machines ultimately to minimize the number of E.Es. The
incapability of the machine cell for the parts is used as a criteria to form the part families
where the number operations of a part, which can not be performed in the cell, uses the
incapability index. It is desirable to assign the parts to the machine cells in order to
minimize the incapability of the machine cells. Then, the performance of the machine cells
can be improved.

The cell formation model in this paper is viewed as a typical assignment problem and
is solved by using the Hungarian method. The two existing cell formation approaches and
the approach in this paper solved various sizes of problems. The number of operations
which can not be performed in each cell and the number of EEs are used as the criterion
to evaluate the approaches. The computational experience showed that the cells formed by
the solution procedure in this paper were of good quality.
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